
django-dynamic-scraper
Documentation

Release 0.13-beta

Holger Drewes

Feb 15, 2019

Contents

1 Features 3

2 User Manual 5
2.1 Introduction . 5
2.2 Installation . 5
2.3 Getting started . 9
2.4 Advanced topics . 20
2.5 Basic services . 37
2.6 Reference . 41
2.7 Development . 47

3 Indices and tables 65

i

ii

django-dynamic-scraper Documentation, Release 0.13-beta

Django Dynamic Scraper (DDS) is an app for Django build on top of the scraping framework Scrapy. While preserving
many of the features of Scrapy it lets you dynamically create and manage spiders via the Django admin interface.

Note: Latest new features added :

• Django 1.11/Scrapy 1.5 support

• Python 3.5/3.6/3.7 (experimental) support

• Javascript rendering

• Scraping JSON content

• More flexible ID and detail page URL(s) concept

• Several checkers for a single scraper

• Custom HTTP Header/Body, Cookies, GET/POST requests

• Scrapy Meta attributes

• Scraper/Checker Monitoring

See Release Notes for further details!

Contents 1

http://www.scrapy.org

django-dynamic-scraper Documentation, Release 0.13-beta

2 Contents

CHAPTER 1

Features

• Create and manage scrapers for your Django models in the Django admin interface

• Many features of Scrapy like regular expressions, processors, pipelines (see Scrapy Docs)

• Image/screenshot scraping

• Dynamic scheduling depending on crawling success via Django Celery

• Checkers to check if items once scraped are still existing

3

http://www.scrapy.org
http://doc.scrapy.org

django-dynamic-scraper Documentation, Release 0.13-beta

4 Chapter 1. Features

CHAPTER 2

User Manual

2.1 Introduction

With Django Dynamic Scraper (DDS) you can define your Scrapy scrapers dynamically via the Django admin interface
and save your scraped items in the database you defined for your Django project. Since it simplifies things DDS is
not usable for all kinds of scrapers, but it is well suited for the relatively common case of regularly scraping a website
with a list of updated items (e.g. news, events, etc.) and then dig into the detail page to scrape some more infos for
each item.

Here are some examples for some use cases of DDS: Build a scraper for . . .

• Local music events for different event locations in your city

• New organic recipes for asian food

• The latest articles from blogs covering fashion and style in Berlin

• . . . Up to your imagination! :-)

Django Dynamic Scraper tries to keep its data structure in the database as separated as possible from the models in
your app, so it comes with its own Django model classes for defining scrapers, runtime information related to your
scraper runs and classes for defining the attributes of the models you want to scrape. So apart from a few foreign key
relations your Django models stay relatively independent and you don’t have to adjust your model code every time
DDS’s model structure changes.

The DDS repository on GitHub contains an example project in the example_project folder, showing how to
create a scraper for open news content on the web (starting with Wikinews from Wikipedia). The source code from
this example is used in the Getting started guide.

2.2 Installation

2.2.1 Requirements

The basic requirements for Django Dynamic Scraper are:

5

http://www.scrapy.org
http://en.wikinews.org/wiki/Main_Page

django-dynamic-scraper Documentation, Release 0.13-beta

• Python 2.7 or Python 3.5, 3.6, 3.7 (experimental)

• Django 1.11 (2.0+ not supported yet)

• Scrapy 1.5

• scrapy-djangoitem 1.1

• Python JSONPath RW 1.4+

• Python-Future (preparing the code base to run with Python 2/3) 0.17.x

If you want to use the scheduling mechanism of DDS you also have to install django-celery:

• django-celery 3.2.1

For scraping images you will need the Pillow Library:

• Pillow Libray (PIL fork) 5.x

Since v.0.4.1 DDS has basic Splash support for rendering/processing Javascript before scraping the page.
For this to work you have to install and configure `Splash and the connecting (see: Setting up Splash (Optional))
scrapy-splash library:

• scrapy-splash 0.7

2.2.2 Release Compatibility Table

Have a look at the following table for an overview which Django, Scrapy, Python and django-celery ver-
sions are supported by which DDS version. Due to dev resource constraints backwards compatibility for older Django
or Scrapy releases for new DDS releases normally can not be granted.

DDS Version Django Scrapy Python django-celery/Celery/Kombu
0.13 1.11 1.5 2.7/3.5/3.6/3.7 (exp) 3.2.1/3.1.25/3.0.37
0.11/0.12 1.8/1.9/1.10/1.11 1.1/1.2(?)/1.3/1.4 2.7+/3.4+ 3.2.1/3.1.25/3.0.37
0.4-0.9 1.7/1.8 0.22/0.24 2.7 3.1.16 (newer untested)
0.3 1.4-1.6 0.16/0.18 2.7 3.0+ (3.1+ untested)
0.2 1.4 0.14 2.7 (3.0 untested)

Note: Please get in touch (GitHub) if you have any additions to this table. A library version is counted as supported
if the DDS testsuite is running through (see: Running the test suite).

2.2.3 Installation with Pip

Django Dynamic Scraper can be found on the PyPI Package Index (see package description). For the installation with
Pip, first install the requirements above. Then install DDS with:

pip install django-dynamic-scraper

2.2.4 Manual Installation

For manually installing Django Dynamic Scraper download the DDS source code from GitHub or clone the project
with git into a folder of your choice:

6 Chapter 2. User Manual

https://www.djangoproject.com/
http://www.scrapy.org
https://github.com/scrapy-plugins/scrapy-djangoitem
https://github.com/kennknowles/python-jsonpath-rw
http://python-future.org/
http://ask.github.com/django-celery/
https://python-pillow.github.io/
https://github.com/scrapy-plugins/scrapy-splash
https://github.com/holgerd77/django-dynamic-scraper
http://pypi.python.org/pypi/django-dynamic-scraper

django-dynamic-scraper Documentation, Release 0.13-beta

git clone https://github.com/holgerd77/django-dynamic-scraper.git .

Then you have to met the requirements above. You can do this by manually installing the libraries you need with
pip or easy_install, which may be a better choice if you e.g. don’t want to risk your Django installation to be
touched during the installation process. However if you are sure that there is no danger ahead or if you are running
DDS in a new virtualenv environment, you can install all the requirements above together with:

pip install -r requirements.txt

Then either add the dynamic_scraper folder to your PYTHONPATH or your project manually or install DDS with:

python setup.py install

Note, that the requirements are NOT included in the setup.py script since this caused some problems when testing
the installation and the requirements installation process with pip turned out to be more stable.

Now, to use DDS in your Django project add 'dynamic_scraper' to your INSTALLED_APPS in your project
settings.

2.2.5 Setting up Scrapy

Scrapy Configuration

For getting Scrapy to work the recommended way to start a new Scrapy project normally is to create a directory and
template file structure with the scrapy startproject myscrapyproject command on the shell first. How-
ever, there is (initially) not so much code to be written left and the directory structure created by the startproject
command cannot really be used when connecting Scrapy to the Django Dynamic Scraper library. So the easiest way
to start a new scrapy project is to just manually add the scrapy.cfg project configuration file as well as the Scrapy
settings.py file and adjust these files to your needs. It is recommended to just create the Scrapy project in the
same Django app you used to create the models you want to scrape and then place the modules needed for scrapy in
a sub package called scraper or something similar. After finishing this chapter you should end up with a directory
structure similar to the following (again illustrated using the open news example):

example_project/
scrapy.cfg
open_news/
models.py # Your models.py file
(tasks.py)
scraper/

settings.py
spiders.py
(checkers.py)
pipelines.py

Your scrapy.cfg file should look similar to the following, just having adjusted the reference to the settings file and
the project name:

[settings]
default = open_news.scraper.settings

#Scrapy till 0.16
[deploy]
#url = http://localhost:6800/
project = open_news

(continues on next page)

2.2. Installation 7

http://www.scrapy.org

django-dynamic-scraper Documentation, Release 0.13-beta

(continued from previous page)

#Scrapy with separate scrapyd (0.18+)
[deploy:scrapyd1]
url = http://localhost:6800/
project = open_news

And this is your settings.py file:

import os

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "example_project.settings") #Changed
→˓in DDS v.0.3

BOT_NAME = 'open_news'

SPIDER_MODULES = ['dynamic_scraper.spiders', 'open_news.scraper',]
USER_AGENT = '%s/%s' % (BOT_NAME, '1.0')

#Scrapy 0.20+
ITEM_PIPELINES = {

'dynamic_scraper.pipelines.ValidationPipeline': 400,
'open_news.scraper.pipelines.DjangoWriterPipeline': 800,

}

#Scrapy up to 0.18
ITEM_PIPELINES = [

'dynamic_scraper.pipelines.ValidationPipeline',
'open_news.scraper.pipelines.DjangoWriterPipeline',

]

The SPIDER_MODULES setting is referencing the basic spiders of DDS and our scraper package where Scrapy
will find the (yet to be written) spider module. For the ITEM_PIPELINES setting we have to add (at least) two
pipelines. The first one is the mandatory pipeline from DDS, doing stuff like checking for the mandatory attributes
we have defined in our scraper in the DB or preventing double entries already existing in the DB (identified by the url
attribute of your scraped items) to be saved a second time.

Setting up Splash (Optional)

More and more webpages only show their full information load after various Ajax calls and/or Javascript func-
tion processing. For being able to scrape those websites DDS supports Splash for basic JS rendering/processing.

For this to work you have to install Splash (the Javascript rendering service) installed - probably via Docker- (see
installation instructions).

Tested versions to work with DDS:

• Splash 1.8

• Splash 2.3

Then scrapy-splash with:

pip install scrapy-splash

Afterwards follow the configuration instructions on the scrapy-splash GitHub page.

For customization of Splash args DSCRAPER_SPLASH_ARGS setting can be used (see: Settings).

8 Chapter 2. User Manual

https://splash.readthedocs.org/en/latest/install.html
https://github.com/scrapy-plugins/scrapy-splash#configuration

django-dynamic-scraper Documentation, Release 0.13-beta

Splash can later be used via activating it for certain scrapers in the corresponding Django Admin form.

Note: Resources needed for completely rendering a website on your scraping machine are vastly larger then for just
requesting/working on the plain HTML text without further processing, so make use of Splash capability on when
needed!

2.3 Getting started

2.3.1 Creating your Django models

Create your model classes

When you want to build a Django app using Django Dynamic Scraper to fill up your models with data you have to
provide two model classes. The first class stores your scraped data, in our news example this is a class called Article
storing articles scraped from different news websites. The second class is a reference class for this first model class,
defining where the scraped items belong to. Often this class will represent a website, but it could also represent a
category, a topic or something similar. In our news example we call the class NewsWebsite. Below is the code for
this two model classes:

from django.db import models
from dynamic_scraper.models import Scraper, SchedulerRuntime
from scrapy_djangoitem import DjangoItem

class NewsWebsite(models.Model):
name = models.CharField(max_length=200)
url = models.URLField()
scraper = models.ForeignKey(Scraper, blank=True, null=True, on_delete=models.SET_

→˓NULL)
scraper_runtime = models.ForeignKey(SchedulerRuntime, blank=True, null=True, on_

→˓delete=models.SET_NULL)

def __unicode__(self):
return self.name

class Article(models.Model):
title = models.CharField(max_length=200)
news_website = models.ForeignKey(NewsWebsite)
description = models.TextField(blank=True)
url = models.URLField()
checker_runtime = models.ForeignKey(SchedulerRuntime, blank=True, null=True, on_

→˓delete=models.SET_NULL)

def __unicode__(self):
return self.title

class ArticleItem(DjangoItem):
django_model = Article

As you can see, there are some foreign key fields defined in the models referencing DDS models. The NewsWebsite
class has a reference to the Scraper DDS model, which contains the main scraper with information about how to scrape

2.3. Getting started 9

django-dynamic-scraper Documentation, Release 0.13-beta

the attributes of the article objects. The scraper_runtime field is a reference to the SchedulerRuntime class from
the DDS models. An object of this class stores scheduling information, in this case information about when to run a
news website scraper for the next time. The NewsWebsite class also has to provide the url to be used during the
scraping process. You can either use (if existing) the representative url field of the model class, which is pointing to
the nicely-layouted overview news page also visited by the user. In this case we are choosing this way with taking the
url attribute of the model class as the scrape url. However, it often makes sense to provide a dedicated scrape_url
(you can name the attribute freely) field for cases, when the representative url differs from the scrape url (e.g. if list
content is loaded via ajax, or if you want to use another format of the content - e.g. the rss feed - for scraping).

The Article class to store scraped news articles also has a reference to the SchedulerRuntime DDS model class
called checker_runtime. In this case the scheduling object holds information about the next existance check (us-
ing the url field from Article) to evaluate if the news article still exists or if it can be deleted (see Defining/Running
item checkers).

Last but not least: Django Dynamic Scraper uses the DjangoItem class from Scrapy for being able to directly store
the scraped data into the Django DB. You can store the item class (here: ArticleItem) telling Scrapy which model
class to use for storing the data directly underneath the associated model class.

Note: For having a loose coupling between your runtime objects and your domain model objects you should declare
the foreign keys to the DDS objects with the blank=True, null=True, on_delete=models.SET_NULL
field options. This will prevent a cascading delete of your reference object as well as the associated scraped objects
when a DDS object is deleted accidentally.

Deletion of objects

If you delete model objects via the Django admin interface, the runtime objects are not deleted as well. If you want
this to happen, you can use Django’s pre_delete signals in your models.py to delete e.g. the checker_runtime
when deleting an article:

@receiver(pre_delete)
def pre_delete_handler(sender, instance, using, **kwargs):

....

if isinstance(instance, Article):
if instance.checker_runtime:

instance.checker_runtime.delete()

pre_delete.connect(pre_delete_handler)

2.3.2 Defining the object to be scraped

If you have done everything right up till now and even synced your DB :-) your Django admin should look similar to
the following screenshot below, at least if you follow the example project:

10 Chapter 2. User Manual

https://scrapy.readthedocs.org/en/latest/topics/djangoitem.html
https://docs.djangoproject.com/en/dev/topics/db/models/#overriding-model-methods

django-dynamic-scraper Documentation, Release 0.13-beta

Before being able to create scrapers in Django Dynamic Scraper you have to define which parts of the Django model
class you defined above should be filled by your scraper. This is done via creating a new ScrapedObjClass in your
Django admin interface and then adding several ScrapedObjAttr datasets to it, which is done inline in the form for the
ScrapedObjClass. All attributes for the object class which are marked as to be saved to the database have to be named
like the attributes in your model class to be scraped. In our open news example we want the title, the description, and
the url of an Article to be scraped, so we add these attributes with the corresponding names to the scraped obj class.

The reason why we are redefining these attributes here, is that we can later define x_path elements for each of theses
attributes dynamically in the scrapers we want to create. When Django Dynamic Scraper is scraping items, the general
workflow of the scraping process is as follows:

• The DDS scraper is scraping base elements from the overview page of items beeing scraped, with each base
element encapsulating an item summary, e.g. in our open news example an article summary containing the title
of the article, a screenshot and a short description. The encapsuling html tag often is a div, but could also be a
td tag or something else.

• If provided the DDS scraper is then scraping the url from this item summary block leading to a detail page of
the item providing more information to scrape

• All the real item attributes (like a title, a description, a date or an image) are then scraped either from within
the item summary block on the overview page or from a detail page of the item. This can be defined later when
creating the scraper itself.

To define which of the scraped obj attributes are just simple standard attributes to be scraped, which one is the base
attribute (this is a bit of an artificial construct) and which one eventually is a url to be followed later, we have
to choose an attribute type for each attribute defined. There is a choice between the following types (taken from
dynamic_scraper.models.ScrapedObjAttr):

2.3. Getting started 11

django-dynamic-scraper Documentation, Release 0.13-beta

ATTR_TYPE_CHOICES = (
('S', 'STANDARD'),
('T', 'STANDARD (UPDATE)'),
('B', 'BASE'),
('U', 'DETAIL_PAGE_URL'),
('I', 'IMAGE'),

)

STANDARD, BASE and DETAIL_PAGE_URL should be clear by now, STANDARD (UPDATE) behaves like
STANDARD, but these attributes are updated with the new values if the item is already in the DB. IMAGE repre-
sents attributes which will hold images or screenshots. So for our open news example we define a base attribute called
‘base’ with type BASE, two standard elements ‘title’ and ‘description’ with type STANDARD and a url field called ‘url’
with type DETAIL_PAGE_URL. Your definition form for your scraped obj class should look similar to the screenshot
below:

To prevent double entries in the DB you also have to set one or more object attributes of type STANDARD or
DETAIL_PAGE_URL as ID Fields. If you provide a DETAIL_PAGE_URL for your object scraping, it is of-
ten a good idea to use this also as an ID Field, since the different URLs for different objects should be unique
by definition in most cases. Using a single DETAIL_PAGE_URL ID field is also prerequisite if you want to use the
checker functionality (see: Defining/Running item checkers) of DDS for dynamically detecting and deleting items not
existing any more.

Also note that these ID Fields just provide unique identification of an object for within the scraping process. In
your model class defined in the chapter above you can use other ID fields or simply use a classic numerical auto-
incremented ID provided by your database.

Note: If you define an attribute as STANDARD (UPDATE) attribute and your scraper reads the value for this attribute
from the detail page of the item, your scraping process requires much more page requests, because the scraper has
to look at all the detail pages even for items already in the DB to compare the values. If you don’t use the update
functionality, use the simple STANDARD attribute instead!

Note: The order attribute for the different object attributes is just for convenience and determines the order of the
attributes when used for defining XPaths in your scrapers. Use 10-based or 100-based steps for easier resorting (e.g.
‘100’, ‘200’, ‘300’, . . .).

12 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

2.3.3 Defining your scrapers

General structure of a scraper

Scrapers for Django Dynamic Scraper are also defined in the Django admin interface. You first have to give the scraper
a name and select the associated ScrapedObjClass. In our open news example we call the scraper ‘Wikinews Scraper’
and select the ScrapedObjClass named ‘Article’ defined above.

The main part of defining a scraper in DDS is to create several scraper elements, each connected to a ScrapedObjAttr
from the selected ScrapedObjClass. Each scraper element define how to extract the data for the specific Scrape-
dObjAttr by following the main concepts of Scrapy for scraping data from websites. In the fields named ‘x_path’
and ‘reg_exp’ an XPath and (optionally) a regular expression is defined to extract the data from the page, following
Scrapy’s concept of XPathSelectors. The ‘request_page_type’ select box tells the scraper if the data for the object
attibute for the scraper element should be extracted from the overview page or a detail page of the specific item. For
every chosen page type here you have to define a corresponding request page type in the admin form above. The fields
‘processors’ and ‘processors_ctxt’ are used to define output processors for your scraped data like they are defined
in Scrapy’s Item Loader section. You can use these processors e.g. to add a string to your scraped data or to bring a
scraped date in a common format. More on this later. Finally, the ‘mandatory’ check box is indicating whether the data
scraped by the scraper element is a necessary field. If you define a scraper element as necessary and no data could be
scraped for this element the item will be dropped. You always have to keep attributes mandatory if the corresponding
attributes of your domain model class are mandatory fields, otherwise the scraped item can’t be saved in the DB.

For the moment, keep the status to MANUAL to run the spider via the command line during this tutorial. Later you
will change it to ACTIVE.

Creating the scraper of our open news example

Let’s use the information above in the context of our Wikinews example. Below you see a screenshot of an html code
extract from the Wikinews overview page like it is displayed by the developer tools in Google’s Chrome browser:

The next screenshot is from a news article detail page:

We will use these code snippets in our examples.

Note: If you don’t want to manually create the necessary DB objects for the example project, you can
also run python manage.py loaddata open_news/open_news_dds_[DDS_VERSION].json from
within the example_project directory in your favorite shell to have all the objects necessary for the example

2.3. Getting started 13

http://www.scrapy.org
http://readthedocs.org/docs/scrapy/en/latest/topics/selectors.html
http://readthedocs.org/docs/scrapy/en/latest/topics/loaders.html
http://en.wikinews.org/wiki/Main_Page
http://en.wikinews.org/wiki/Main_Page

django-dynamic-scraper Documentation, Release 0.13-beta

created automatically. Use the file closest to the current DDS version. If you run into problems start installing the
fitting DDS version for the fixture, then update the DDS version and apply the latest Django migrations.

Note: The WikiNews site changes its code from time to time. I will try to update the example code and text in the
docs, but I won’t keep pace with the screenshots so they can differ slightly compared to the real world example.

1. First we have to define a base scraper element to get the enclosing DOM elements for news item summaries.
On the Wikinews overview page all news summaries are enclosed by <td> tags with a class called ‘l_box’, so //
td[@class="l_box"] should do the trick. We leave the rest of the field for the scraper element on default.

2. It is not necessary but just for the purpose of this example let’s scrape the title of a news article from the article detail
page. On an article detail page the headline of the article is enclosed by a <h1> tag with an id named ‘firstHeading’.
So //h1[@id="firstHeading"]/text() should give us the headline. Since we want to scrape from the detail
page, we have to activate the ‘from_detail_page’ check box.

3. All the standard elements we want to scrape from the overview page are defined relative to the base ele-
ment. Therefore keep in mind to leave the trailing double slashes of XPath definitions. We scrape the short
description of a news item from within a tag with a class named ‘l_summary’. So the XPath is p/
span[@class="l_summary"]/text().

4. And finally the url can be scraped via the XPath span[@class="l_title"]/a/@href. Since we only scrape
the path of our url with this XPath and not the domain, we have to use a processor for the first time to complete the
url. For this purpose there is a predefined processor called ‘pre_url’. You can find more predefined processors in the
dynamic_scraper.utils.processors module - see Processors for processor reference - ‘pre_url’ is simply
doing what we want, namely adding a base url string to the scraped string. To use a processor, just write the function
name in the processor field. Processors can be given some extra information via the processors_ctxt field. In our
case we need the spefic base url our scraped string should be appended to. Processor context information is provided
in a dictionary like form: 'processor_name': 'context', in our case: 'pre_url': 'http://en.
wikinews.org'. Together with our scraped string this will create the complete url.

14 Chapter 2. User Manual

http://en.wikinews.org/wiki/Main_Page

django-dynamic-scraper Documentation, Release 0.13-beta

This completes the xpath definitions for our scraper. The form you have filled out should look similar to the screenshot
above (which is broken down to two rows due to space issues).

Note: You can also scrape attributes of your object from outside the base element by using the .. notation in your
XPath expressions to get to the parent nodes!

Note: Starting with DDS v.0.8.11 you can build your detail page URLs with placeholders for main page
attributes in the form of {ATTRIBUTE_NAME}, see Attribute Placeholders for further reference.

Adding corresponding request page types

For all page types you used for your ScraperElemes you have to define corresponding RequestPageType
objects in the Scraper admin form. There has to be exactly one main page and 0-25 detail page type objects.

2.3. Getting started 15

django-dynamic-scraper Documentation, Release 0.13-beta

Within the RequestPageType object you can define request settings like the content type (HTML, XML,. . .), the
request method (GET or POST) and others for the specific page type. With this it is e.g. possible to scrape HTML
content from all the main pages and JSON content from the followed detail pages. For more information on this have
a look at the Advanced Request Options section.

Create the domain entity reference object (NewsWebsite) for our open news example

Now - finally - we are just one step away of having all objects created in our Django admin. The last dataset we have
to add is the reference object of our domain, meaning a NewsWebsite object for the Wikinews Website.

To do this open the NewsWebsite form in the Django admin, give the object a meaningful name (‘Wikinews’), assign
the scraper and create an empty SchedulerRuntime object with SCRAPER as your runtime_type.

16 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

2.3.4 Connecting Scrapy with your Django objects

For Scrapy to work with your Django objects we finally set up two static classes, the one being a spider class, inheriting
from DjangoSpider, the other being a finalising pipeline for saving our scraped objects.

Adding the spider class

The main work left to be done in our spider class - which is inheriting from the DjangoSpider class of Django Dynamic
Scraper - is to instantiate the spider by connecting the domain model classes to it in the __init__ function:

from dynamic_scraper.spiders.django_spider import DjangoSpider
from open_news.models import NewsWebsite, Article, ArticleItem

class ArticleSpider(DjangoSpider):

name = 'article_spider'

def __init__(self, *args, **kwargs):
self._set_ref_object(NewsWebsite, **kwargs)
self.scraper = self.ref_object.scraper
self.scrape_url = self.ref_object.url
self.scheduler_runtime = self.ref_object.scraper_runtime
self.scraped_obj_class = Article
self.scraped_obj_item_class = ArticleItem
super(ArticleSpider, self).__init__(self, *args, **kwargs)

Adding the pipeline class

Since you maybe want to add some extra attributes to your scraped items, DDS is not saving the scraped items for you
but you have to do it manually in your own item pipeline:

import logging
from django.db.utils import IntegrityError
from scrapy.exceptions import DropItem
from dynamic_scraper.models import SchedulerRuntime

class DjangoWriterPipeline(object):
(continues on next page)

2.3. Getting started 17

django-dynamic-scraper Documentation, Release 0.13-beta

(continued from previous page)

def process_item(self, item, spider):
if spider.conf['DO_ACTION']: #Necessary since DDS v.0.9+

try:
item['news_website'] = spider.ref_object

checker_rt = SchedulerRuntime(runtime_type='C')
checker_rt.save()
item['checker_runtime'] = checker_rt

item.save()
spider.action_successful = True
dds_id_str = str(item._dds_item_page) + '-' + str(item._dds_item_id)
spider.struct_log("{cs}Item {id} saved to Django DB.{ce}".format(

id=dds_id_str,
cs=spider.bcolors['OK'],
ce=spider.bcolors['ENDC']))

except IntegrityError as e:
spider.log(str(e), logging.ERROR)
spider.log(str(item._errors), logging.ERROR)
raise DropItem("Missing attribute.")

else:
if not item.is_valid():

spider.log(str(item._errors), logging.ERROR)
raise DropItem("Missing attribute.")

return item

The things you always have to do here is adding the reference object to the scraped item class and - if you are using
checker functionality - create the runtime object for the checker. You also have to set the action_successful
attribute of the spider, which is used internally by DDS when the spider is closed.

2.3.5 Running/Testing your scraper

You can run/test spiders created with Django Dynamic Scraper from the command line similar to how you would run
your normal Scrapy spiders, but with some additional arguments given. The syntax of the DDS spider run command
is as following:

scrapy crawl [--output=FILE --output-format=FORMAT] SPIDERNAME -a id=REF_OBJECT_ID
[-a do_action=(yes|no) -a run_type=(TASK|SHELL)
-a max_items_read={Int} -a max_items_save={Int}
-a max_pages_read={Int}
-a start_page=PAGE -a end_page=PAGE
-a output_num_mp_response_bodies={Int} -a output_num_dp_

→˓response_bodies={Int}]

• With -a id=REF_OBJECT_ID you provide the ID of the reference object items should be scraped for, in
our example case that would be the Wikinews NewsWebsite object, probably with ID 1 if you haven’t added
other objects before. This argument is mandatory.

• By default, items scraped from the command line are not saved in the DB. If you want this to happen, you have
to provide -a do_action=yes.

• With -a run_type=(TASK|SHELL) you can simulate task based scraper runs invoked from the command
line. This can be useful for testing, just leave this argument for now.

18 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

• With -a max_items_read={Int} and -a max_items_save={Int} you can override the scraper
settings for these params.

• With -a max_pages_read={Int} you can limit the number of pages read when using pagination

• With -a start_page=PAGE and/or -a end_page=PAGE it is possible to set a start and/or end page

• With -a output_num_mp_response_bodies={Int} and -a output_num_dp_response_bodies={Int}
you can log the complete response body content of the {Int} first main/detail page responses to the screen for
debugging (beginnings/endings are marked with a unique string in the form RP_MP_{num}_START for using
full-text search for orientation)

• If you don’t want your output saved to the Django DB but to a custom file you can use Scrapy‘s build-in output
options --output=FILE and --output-format=FORMAT to scrape items into a file. Use this without
setting the -a do_action=yes parameter!

So, to invoke our Wikinews scraper, we have the following command:

scrapy crawl article_spider -a id=1 -a do_action=yes

If you have done everything correctly (which would be a bit unlikely for the first run after so many single steps, but
just in theory. . . :-)), you should get some output similar to the following, of course with other headlines:

In your Django admin interface you should now see the scraped articles listed on the article overview page:

2.3. Getting started 19

django-dynamic-scraper Documentation, Release 0.13-beta

Phew.

Your first scraper with Django Dynamic Scraper is working. Not so bad! If you do a second run and there haven’t
been any new bugs added to the DDS source code in the meantime, no extra article objects should be added to the DB.
If you try again later when some news articles changed on the Wikinews overview page, the new articles should be
added to the DB.

2.4 Advanced topics

2.4.1 Defining/Running item checkers

Django Dynamic Scraper comes with a built-in mechanism to check, if items once scraped are still existing or if they
could be deleted from the database. The entity providing this mechanism in DDS is called a checker. A checker
is like a scraper also using the scraping logic from Scrapy. But instead of building together a new scraped item, it just
checks the detail page referenced by a DETAIL_PAGE_URL of a scraped item. Depending on the checker_type
and the result of the detail page check, the scraped item is kept or will be deleted from the DB.

Creating a checker class

To get a checker up and running you first have to create a checker class for each of your scraped object domain models.
In our open news example, this would be a class called ArticleChecker in a module called checkers in our
scraper directory:

from dynamic_scraper.spiders.django_checker import DjangoChecker
from open_news.models import Article

class ArticleChecker(DjangoChecker):

(continues on next page)

20 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

(continued from previous page)

name = 'article_checker'

def __init__(self, *args, **kwargs):
self._set_ref_object(Article, **kwargs)
self.scraper = self.ref_object.news_website.scraper
#self.scrape_url = self.ref_object.url (Not used any more in DDS v.0.8.3+)
self.scheduler_runtime = self.ref_object.checker_runtime
super(ArticleChecker, self).__init__(self, *args, **kwargs)

The checker class inherits from the DjangoChecker class from DDS and mainly gives the checker the information what
to check and what parameters to use for checking. Be careful that the reference object is now the scraped object itself,
since the checker is scraping from the item page url of this object. Furthermore the checker needs its configuration
data from the scraper of the reference object. The scheduler runtime is used to schedule the next check. So if you want
to use checkers for your scraped object, you have to provide a foreign key to a SchedulerRuntime object in your model
class. The scheduler runtime object also has to be saved manually in your pipeline class (see: Adding the pipeline
class).

Checker Configuration

You can create one or more checkers per scraper in the Django admin. A checker is connected to a
DETAIL_PAGE_URL attribute and has a certain type, defining the checker behaviour. If you define more than one
checker for a scraper an item is deleted when one of the checkers succeed.

There are momentarily the following checker types to choose from:

404 Item is deleted after check has returned 404 HTTP status code 2x in a row
404_OR_X_PATH Same as 404 + check for an x_path value in the result

2.4. Advanced topics 21

django-dynamic-scraper Documentation, Release 0.13-beta

For selecting a checker type and providing the parameters for an x_path checker you have to look for an example item
page url from the website to be scraped which references an item not existing any more. If the urls to your scraped
items are build using an item ID you can e.g. try to lower this ID or increase it to a very large number. Be creative! In
our Wikinews example it is a bit different, since the news article url there is build using the title of the article. So for
the checker we take a random article url to a not existing article: “http://en.wikinews.org/wiki/Random_article_text”.

If your url found is responding with a 404 when invoked, you can simply choose 404 as your checker type.
For a 404_OR_X_PATH checker you have to provide an XPath for your chosen url which will extract a
string from that url uniquely indicating, that the content originally expected is not there any more. For our
Wikinews example and the url we choose above there is a text and a url provided suggesting to create the cur-
rently not existing wiki page, so we can use the XPath //a[@href="http://en.wikinews.org/wiki/
This_wiki_article_doesnt_exist"]/text() and the result string “create this page” to uniquely identi-
fying a scraped item not existing any more. It is also possible to leave out the result string. Then the checker already
succeeds when the given xpath is finding elements on the page.

Note: Be sure to add your new checkers module to the SPIDERS_MODULES list in scrapy’s settings.py.

Note: Attention! Make sure that the XPath/result string combination you choose is NOT succeeding on normal item
pages, otherwise the checker will delete all your items!

Note: To make sure your items aren’t deleted accidentally on a 404 response, 404 checks are only deleted on the
second try while XPath checks are deleted at once. So to save crawling resources always try to realize your checking

22 Chapter 2. User Manual

http://en.wikinews.org/wiki/Random_article_text

django-dynamic-scraper Documentation, Release 0.13-beta

with XPath checks, otherwise the crawler need double the amount of checks!

Running your checkers

You can test your DDS checkers the same way you would run your scrapers:

scrapy crawl CHECKERNAME -a id=REF_OBJECT_ID
[-a do_action=(yes|no) -a run_type=(TASK|SHELL)
-a output_response_body=(yes|no)]

As a reference object ID you now have to provide the ID of a scraped item to be checked. With do_action=yes an
item is really deleted, otherwise the checker is only tested without actually manipulating the DB.

Here is an example of a checker run actually keeping the still-existing item:

If you want to test a check on an item scraped in the open news example project, change the url of the item in the DB
to the checker reference url, look for the item ID and then run:

scrapy crawl article_checker -a id=ITEM_ID -a do_action=yes

If everything works well, your item should have been deleted.

Run checker tests

Django Dynamic Scraper comes with a build-in scraper called checker_test which can be used to test your
checkers against the defined reference url. You can run this checker on the command line with the following command:

scrapy crawl checker_test -a id=SCRAPER_ID
-a output_response_body=(yes|no)]

This scraper is useful both to look, if you have chosen a valid checker_x_path_ref_url and corresponding
checker_x_path and checker_x_path_result values as well as to see over time if your reference urls stay
valid.

2.4. Advanced topics 23

django-dynamic-scraper Documentation, Release 0.13-beta

For running all checker tests at once there exists a simple Django management command called
run_checker_tests, which executes the checker_test scraper for all of your defined scrapers and outputs
Scrapy log messages on WARNING level and above:

python manage.py run_checker_tests [--only-active --report-only-errors --send-admin-
→˓mail]

The option only-activewill limit execution to active scrapers, --report-only-errorswill more generously
pass the test on some not so severe cases (e.g. a checker ref url returning 404 for a 404_OR_X_PATH checker
type). Executing the command with the --send-admin-mail flag will send an email to Django admins if checker
configurations are not working which can be useful if you want to run this command as a cronjob.

2.4.2 Scheduling scrapers/checkers

Introduction

Django Dynamic Scraper comes with a build-in mechanism to schedule the runs of your scrapers as well as your
checkers. After each run DDS dynamically calculates the next execution time depending on the success of the run. For
a scraper that means, that the time between two scraper runs is shortened when new items could be scraped from a page
and is prolonged if not. For a checker, it means that a next check is prolonged if the check was not successful, meaning
that the item was not deleted. If it was deleted - well: than it was deleted! No further action! :-) The parameters for
this calculation (e.g. a min/max time period between two actions) are defined for each ScrapedObjClass in the DB.

DDS is using django-celery to actually run your scrapers. Celery is a distributed task queue system for Python, which
means that you can run a celery daemon which takes task orders from somewhere and then executes the corresponding
tasks in a sequential way so that no task is lost, even if the system is under heavy load. In our use case Celery is
“just” working as a comfortable cron job replacement, which can be controlled via the Django admin interface. The
scheduler of DDS is using the scheduler runtime objects we defined for our example scraper and checker in the sections
before. The scheduler runtime objects contain some dynamic information for the calculation of the next execution time
of the scraper as well as the next execution time itself. For django-celery a task for each ScrapedObjClass has to be
defined, which can than be started and stopped in the Django admin interface. Each task is executed periodically in a
configurable time frame (e.g. ever hour). The task is then running all the scrapers associated with its ScrapedObjClass,
which next execution time lies in the past. After each run, the next next execution time is calculated by the scraper and
saved into its scheduler runtime object. The next time this time lies in the past, the scraper is run again.

Note: The number of spiders/checkers run at each task run is limited by the
DSCRAPER_MAX_SPIDER_RUNS_PER_TASK and DSCRAPER_MAX_CHECKER_RUNS_PER_TASK settings
which can be adopted in your custom settings file (see: Settings).

24 Chapter 2. User Manual

http://ask.github.com/django-celery/

django-dynamic-scraper Documentation, Release 0.13-beta

Installing/configuring django-celery for DDS

This paragraph is covering only the specific installation issues with django-celery in regard of installing it for the use
with DDS, so you should be familiar with the basic functionality of Celery and take general installation infos from the
django-celery website. If you have successfully installed and configured django-celery, you should see the Djcelery
tables in the Django admin interface:

For django-celery to work, Celery also needs a message broker for the actual message transport. For our rela-
tively simple use case, kombu is the easiest and recommended choice. Kombu is automatically installed as a depen-
dency when you install django-celery and you can add it to your INSTALLED_APPS:

INSTALLED_APPS = (
...
'kombu.transport.django',
'djcelery',

)

Then we can configure django-celery in combination with kombu in our settings.py file. A starter configuration
could look similar to this:

django-celery settings
import djcelery
djcelery.setup_loader()
BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_BACKEND = "django"

(continues on next page)

2.4. Advanced topics 25

http://ask.github.com/django-celery/
http://ask.github.com/django-celery/
http://pypi.python.org/pypi/kombu
http://ask.github.com/django-celery/
http://pypi.python.org/pypi/kombu

django-dynamic-scraper Documentation, Release 0.13-beta

(continued from previous page)

BROKER_USER = "guest"
BROKER_PASSWORD = "guest"
BROKER_VHOST = "/"
CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler'

Defining your tasks

For defining tasks for your scrapers and checkers which can be selected for periodical runs in the Django admin
interface, you have to define two short methods in a Python module in which your tasks are declared and make sure,
that your tasks are found by django-celery. The easiest way to do this is by placing your methods in a module called
tasks.py in the main directory of your app. The tasks should then be found automatically. The two methods in our
open news example look like this:

from celery.task import task
from django.db.models import Q
from dynamic_scraper.utils.task_utils import TaskUtils
from open_news.models import NewsWebsite, Article

@task()
def run_spiders():

t = TaskUtils()
#Optional: Django field lookup keyword arguments to specify which reference

→˓objects (NewsWebsite)
#to use for spider runs, e.g.:
kwargs = {

'scrape_me': True, #imaginary, model NewsWebsite hat no attribute 'scrape_me'
→˓in example

}
#Optional as well: For more complex lookups you can pass Q objects vi args

→˓argument
args = (Q(name='Wikinews'),)
t.run_spiders(NewsWebsite, 'scraper', 'scraper_runtime', 'article_spider', *args,

→˓**kwargs)

@task()
def run_checkers():

t = TaskUtils()
#Optional: Django field lookup keyword arguments to specify which reference

→˓objects (Article)
#to use for checker runs, e.g.:
kwargs = {

'check_me': True, #imaginary, model Article hat no attribute 'check_me' in
→˓example

}
#Optional as well: For more complex lookups you can pass Q objects vi args

→˓argument
args = (Q(id__gt=100),)
t.run_checkers(Article, 'news_website__scraper', 'checker_runtime', 'article_

→˓checker', *args, **kwargs)

The two methods are decorated with the Celery task decorator to tell Celery that these methods should be regarded as
tasks. In each task, a method from the TaskUtils module from DDS is called to run the spiders/checkers ready for
the next execution.

Now you can create a peridoc task both for your scraper and your checker in the Django admin interface:

26 Chapter 2. User Manual

http://ask.github.com/django-celery/

django-dynamic-scraper Documentation, Release 0.13-beta

In the peridoc task form you should be able to select your tasks defined above. Create an interval how often these
tasks are performed. In our open news example, 2 hours should be a good value. Please keep in mind, that these are
not the values how often a scraper/checker is actually run. If you define a two hour timeframe here, it just means,
that ever two hours, the task method executed is checking for scrapers/checkers with a next execution time (defined by
the associated scheduler_runtime) lying in the past and run these scrapers. The actual time period between two
runs is determined by the next execution time itself which is calculated dynamically and depending on the scheduling
configuration you’ll learn more about below. For the scrapers to run, remember also that you have to set the scraper
active in the associated scraper object.

Run your tasks

To actually run the task (respectively set our scheduling system to work as a whole) we have to run two different
daemon processes. The first one is the celeryd daemon from django-celery which is responsible for collecting and
executing tasks. We have to run celeryd with the -B option to also run the celerybeat task scheduler which executes
periodical tasks defined in Celery. Start the daemon with:

python manage.py celeryd -l info -B --settings=example_project.settings

If everything works well, you should now see the following line in your command line output:

[2011-12-12 10:20:01,535: INFO/MainProcess] Celerybeat: Starting...

As a second daemon process we need the server from the separate scrapyd project to actually crawl the different
websites targeted with our scrapers. Make sure you have deployed your Scrapy project (see: Scrapy Configuration)
and run the server with:

scrapyd

You should get an output similar to the following:

2.4. Advanced topics 27

http://ask.github.com/django-celery/

django-dynamic-scraper Documentation, Release 0.13-beta

For testing your scheduling system, you can temporarily set your time interval of your periodic task to a lower interval,
e.g. 1 minute. Now you should see a new task coming in and being executed every minute:

Got task from broker: open_news.tasks.run_spiders[5a3fed53-c26a-4f8f-b946-
→˓8c4a2c7c5c83]
Task open_news.tasks.run_spiders[5a3fed53-c26a-4f8f-b946-8c4a2c7c5c83] succeeded in 0.
→˓052549123764s: None

The executed task should then run the scrapers/checkers which you should see in the output of the Scrapy server:

Process started: project='default' spider='article_spider' job=
→˓'41f27199259e11e192041093e90a480a' pid=5932...
Process finished: project='default' spider='article_spider' job=
→˓'41f27199259e11e192041093e90a480a' pid=5932...

Note: Note that you can vary the log level for debugging as well as other run parameters when you start the servers,
see the man/help pages of the celery and the Scrapy daemons.

Note: Please see this configuration described here just as a hint to get started. If you want to use this in production
you have to provide extra measures to make sure that your servers run constantly and that they are secure. See the
specific server documentation for more information.

Note:

There is a known bug causing scheduling not to work when LOG_STDOUT is set to True in the scraper
settings. If you know the cause or a fix for this, please report on GitHub!

Scheduling configuration

Now coming to the little bit of magic added to all this stuff with dynamic scheduling. The basis for the dynamic
scheduling in DDS is layed both for your scrapers and your checkers with the scheduling configuration parameters in
your scraped object class definitions in the Django admin interface. The default configuration for a scraper looks like
this:

"MIN_TIME": 15,
"MAX_TIME": 10080,
"INITIAL_NEXT_ACTION_FACTOR": 10,
"ZERO_ACTIONS_FACTOR_CHANGE": 20,
"FACTOR_CHANGE_FACTOR": 1.3,

Scheduling now works as follows: the inital time period between two scraper runs is calculated by taking the product
of the MIN_TIME and the INITIAL_NEXT_ACTION_FACTOR, with minutes as the basic time unit for MIN_TIME
and MAX_TIME:

initial time period := 15 Minutes (MIN_TIME) * 10 (INITIAL_NEXT_ACTION_FACTOR) = 150
→˓Minutes = 2 1/2 Hours

28 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

Now, every time a scraper run was successful, the new next action factor is calculated by dividing the actual next action
factor by the FACTOR_CHANGE_FACTOR. So a successful scraper run would lead to the following new time period:

new next action factor (NAF) := 10 (INITIAL_NEXT_ACTION_FACTOR) / 1.3 (FACTOR_CHANGE_
→˓FACTOR) = 7.69 (rounded)
time period after successful run := 15 Minutes * 7.69 (NAF) = 115 Minutes

So if it turns out that your scraper always find new items the time period between two runs gets smaller and smaller
until the defined MIN_TIME is reached which is taken as a minimum time period between two scraper runs. If your
scraper was not successful (meaning, that no new items were found) these unsucessful actions (scraper runs) are
counted as ZERO_ACTIONS. If a number of unsuccessful actions greater than ZERO_ACTIONS_FACTOR_CHANGE
is counted, a new next action factor is calculated, this time by taking the product of the actual action factor and the
FACTOR_CHANGE_FACTOR (calculation restarting from initial values for the example):

new next action factor (NAF) := 10 (INITIAL_NEXT_ACTION_FACTOR) * 1.3 (FACTOR_CHANGE_
→˓FACTOR) = 13
time period after 21 unsuccessful runs := 15 Minutes * 13 (NAF) = 195 Minutes

So the time period between two scraper runs becomes larger. If there is never a new item found for your scraper this
will go on until the calculated time period reaches the MAX_TIME defined.

In the real world application of this mechanism normally neither the MIN_TIME nor the MAX_TIME should be
reached. The normal situation is that your scraper often finds nothing new on the page to be scraped and than af-
ter x executed runs finds new items provided on the website to be scraped. If this x is generally lower than your
defined ZERO_ACTIONS_FACTOR_CHANGE number, the time period is becoming shorter over time. But since this
means more scraper runs in the same time chances are high that with these narrower scheduled runs less zero actions
occur and leads at some point to an again increased next action factor. So some kind of (relatively) stable next action
factor should be reached over time, representing in the best case a good compromise between the needs of actuality of
your scrapers and not to much resources wasted on running your scraper on websites not updated in between two runs.

Note: Since this is a relatively complex mechanism also depending on a large part on the update process of your
scraped website, it will probably take some time to get a bit a feeling for how the scheduling is developing and to what
action factors it tends to, so don’t try to find the perfect solution in the first run. Instead, start with a (maybe rather too
conservatively calculated) start configuration and adjust your parameters over time. You can observe the development
of your action factors in the scheduler runtime objects.

Note: Please be aware that scraping is a resource consuming task, for your server but as well for the server of the
websites you are scraping. Try to find a balanced solution, not just setting your MIN_TIME to 1 minute or similar.

Note: If you don’t need dynamic scheduling, you can also just set the MIN_TIME and the MAX_TIME to the same
values and just ignore the rest.

Scheduling of your checkers works very similar to the scraper scheduling, the inital configuration is as follows:

"MIN_TIME": 1440,
"MAX_TIME": 10080,
"INITIAL_NEXT_ACTION_FACTOR": 1,
"ZERO_ACTIONS_FACTOR_CHANGE": 5,
"FACTOR_CHANGE_FACTOR": 1.3,

Since the checker scheduling is terminated with the success of a checker run (meaning the item and the associated
scheduler runtime is deleted), there is only the prolonging time period part of the scheduler actually working. So

2.4. Advanced topics 29

django-dynamic-scraper Documentation, Release 0.13-beta

scraped items are checked in a (relatively, defined by your configuration) short time period at first. If the item turns
out to be persistently existing, the checks are prolonged till MAX_TIME is reached.

2.4.3 Advanced Request Options

Since DDS v.0.7+ you have more options to fine-tune your scraping requests by e.g. providing additional values
for cookies or HTTP headers. These values are internally passed to Scrapy’s Request object. You can find
the extended request options in the Request options tab in the Scraper form of your Django project
admin. For the different page types like the (paginated) main pages and the detail pages following scraped urls you
can define different request options.

Note: Parameters for the different options are passed as JSON dicts. Make sure to use double quotes for attribute
values and to leave the comma for the last attribute key-value pair.

Request Type and Method

The request type - corresponding to Scrapy’s Request classes - and the type of the request being sent as GET or POST.
Normally you will choose GET together with a classic Request and POST with a FormRequest but for special
cases you are free too choose here.

HTTP Headers

For setting/changing specific HTTP header fields like the referer URL use the headers text field in the request
options.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page (no
escaping of curly brackets inside JSON value strings).

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according to your
pagination parameters (see: Pagination).

30 Chapter 2. User Manual

http://doc.scrapy.org/en/latest/topics/request-response.html#request-objects
http://doc.scrapy.org/en/latest/topics/request-response.html#request-objects

django-dynamic-scraper Documentation, Release 0.13-beta

HTTP Body

Setting/changing the HTTP body. This can be useful for some special-case scenarios, for example if you want to
send a POST request with content type for the request altered and sending POST parameters as a JSON dict.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page.

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according to your
pagination parameters (see: Pagination).

Note: Don’t be fooled, especially by the example provided: data for the body attribute is NOT provided as JSON but
as a string. While e.g. the Headers field always has to be in JSON format, the Body text is just randomly JSON
in this example, but it could also be This is my body text..

Request Cookies

Sometime the output of a website you want to scrape might depend on the values of some cookies sent to the server.
For this occasion you can use the Cookies form in the request options tab, e.g. for setting the language of a website
to english.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page (no
escaping of curly brackets inside JSON value strings).

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according to your
pagination parameters (see: Pagination).

2.4. Advanced topics 31

django-dynamic-scraper Documentation, Release 0.13-beta

Note: If you want to pass a session ID for a site as a cookie, you can open the desired website in your browser
and copy-paste the session ID from the development console for immediately following scraper runs.

Scrapy Meta Options

Changing Scrapy meta attributes, see Scrapy docs for reference.

Form Data

If you want to scrape data provided on a website via a web form, data is often returned via POST request after sending
various POST request parameters for narrowing the results. For this scenario use the FormRequest request
type and POST as method in the scraper admin and provide the adequate form data as a JSON dictionary in the request
options.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page (no
escaping of curly brackets inside JSON value strings).

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according to your
pagination parameters (see: Pagination).

2.4.4 Pagination

Django Dynamic Scraper supports two layers of pagination for scraping your objects from several overview pages or
archives. The following screenshot shows the pagination parameters which can be defined in the Django admin for
each scraper:

32 Chapter 2. User Manual

doc.scrapy.org/en/latest/topics/request-response.html#topics-request-meta

django-dynamic-scraper Documentation, Release 0.13-beta

For using pagination you have to switch the pagination_type in your scraper definition from NONE to your
desired type.

First Pagination Layer: Static Pagination

The main concept of the static pagination layer is, that you define a pagination_append_str with a placeholder
{page}, which is replaced through a list generated by selecting the pagination_type and giving a corresponding
pagination_page_replace context. There are the following pagination types to choose from:

Pagination type: RANGE_FUNCT (+FOLLOW)

This pagination type uses the python range function. As a replace context the same arguments like in the range function
are used: range([start], stop[, step]). The integer list created by this function will be used as an input
to replace the “{page}” template tag in the append string to form the different urls.

So the parameters in our example above in the screenshot will lead - together with “http://www.urltoscrape.org” as the
base scrape url of your scraper runtime - to the following urls to be scraped:

1. http://www.urltoscrape.org/articles/0

2. http://www.urltoscrape.org/articles/10

3. http://www.urltoscrape.org/articles/20

2.4. Advanced topics 33

http://docs.python.org/library/functions.html#range
http://www.urltoscrape.org
http://www.urltoscrape.org/articles/0
http://www.urltoscrape.org/articles/10
http://www.urltoscrape.org/articles/20

django-dynamic-scraper Documentation, Release 0.13-beta

4. http://www.urltoscrape.org/articles/30

Pagination type: FREE_LIST (+FOLLOW)

If the urls from an archive are formed differently you can use this pagination type and just provide a list with different
fitting replacements, the syntax is as follow: 'Replace text 1', 'Some other text 2', 'Maybe a
number 3',

So if you define a list as follows: 'a-d', 'e-h', 'i-n', 'o-z', you get the following urls:

1. http://www.urltoscrape.org/articles/a-d

2. http://www.urltoscrape.org/articles/e-h

3. http://www.urltoscrape.org/articles/i-n

4. http://www.urltoscrape.org/articles/o-z

Second Pagination Layer: Dynamic Follow Pagination

The second pagination layer allows for dynamic following of pages (e.g. from a pagination on the website to be
scraped), by defining an XPath to extract the URL to be followed and an optional additional XPath for the page
number/name which can be used in the {follow_page} placeholder.

For this follow pagination an extra RequestPageType (RPT) FOLLOW can be defined. If there is no such RPT,
the main page RPT is used (in the definition of your elements/attributes to scrape, always assign the main page RPT
though).

The follow pagination can be used as stand-alone pagination or in combination with the static pagination types. In the
second case pages are followed starting from all static main pages scraped.

2.4.5 Scraping JSON content

Beside creating HTML or XML scrapers where you can use classic XPath notation, DDS supports also scraping pages
encoded in JSON (v.0.5.0 and above), e.g. for crawling web APIs or ajax call result pages.

For scraping JSON, JSONPath is used, an XPath-like expression language for digging into JSON. For reference see
expressions as defined here:

• GitHub - python-jsonpath-rw Library

• JSONPath - XPath for JSON

Note: Using JSONPath in DDS works for standard JSON page results, but is not as heavily tested as using XPath
for data extraction. If you are working with more complex JSONPath queries and run into problems, please report
them on GitHub!

Example

Consider the following simple JSON example:

34 Chapter 2. User Manual

http://www.urltoscrape.org/articles/30
http://www.urltoscrape.org/articles/a-d
http://www.urltoscrape.org/articles/e-h
http://www.urltoscrape.org/articles/i-n
http://www.urltoscrape.org/articles/o-z
https://github.com/kennknowles/python-jsonpath-rw
http://goessner.net/articles/JsonPath/
https://github.com/holgerd77/django-dynamic-scraper

django-dynamic-scraper Documentation, Release 0.13-beta

{
"response": {
"num_results": 3,
"results": [

{
"title": "Example Title",
"description": "Example Description"

},
//...

]
}

}

The title elements of the results can then be scraped by defining response.results JSONPath as the base
element and title as the JSONPath for the scraped object attribute.

Using the $ for refering to the JSON root is actually optional, so response.results is equivalent to $.
response.results. Sometimes it might be necessary to use the $ though, e.g. if you directly want to point
to the root of the JSON file, e.g. to reference the objects in a JSON array file.

Note: The example project actually contains a working (most of the time :-)) JSON example scraper!

2.4.6 Scraping images/screenshots

Django Dynamic Scraper is providing a custom image pipeline build on Scrapy’s item pipeline for downloading images
to scrape and download images associated to your items scraped and and save a reference to each image together with
the scraped item in the DB.

Configuration

For using image scraping in DDS you have to provide some additional parameters in your Scrapy settings.py file:

import os.path

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))

ITEM_PIPELINES = [
'dynamic_scraper.pipelines.DjangoImagesPipeline',
'dynamic_scraper.pipelines.ValidationPipeline',
'open_news.scraper.pipelines.DjangoWriterPipeline',

]

IMAGES_STORE = os.path.join(PROJECT_ROOT, '../thumbnails')

IMAGES_THUMBS = {
'small': (170, 170),

}

In your settings file you have to add the DjangoImagesPipeline from DDS to your ITEM_PIPELINES and
define a folder to store images scraped. Don’t forget to create this folder in your file system and give it adequate
permissions. You can also use the thumbnail creation capabilities already build in Scrapy by defining the thumbnail
size via the IMAGES_THUMBS parameter.

2.4. Advanced topics 35

http://readthedocs.org/docs/scrapy/en/latest/topics/images.html

django-dynamic-scraper Documentation, Release 0.13-beta

Choosing store format for images

Different from Scrapy behaviour DDS is by default storing only one image in a flat store format directly under
the IMAGES_STORE directory (Scrapy is creating a full/ subdirectory for the original image). If you use the
IMAGES_THUMBS setting, the scaled down thumbnail image will replace the image with the original size. Due to this
simplification you can only use one entry in your IMAGES_THUMBS dictionary and the name of the key there doesn’t
matter.

Starting with DDS v.0.3.9 you can change this behaviour with the DSCRAPER_IMAGES_STORE_FORMAT set-
ting:

DSCRAPER_IMAGES_STORE_FORMAT = 'FLAT' # The original image or - if available - one
→˓thumbnail image
DSCRAPER_IMAGES_STORE_FORMAT = 'ALL' # Both the original image and all given
→˓thumbnail sizes
DSCRAPER_IMAGES_STORE_FORMAT = 'THUMBS' # Only the thumbnails

FLAT is the default setting with the behaviour described above. The ALL setting restores the Scrapy behaviour, the
original images are stored in a full/ directory under IMAGES_STORE, thumbnail files - if available - in separate
sub directories for different thumbnail sizes (e.g. thumbs/small/).

Setting DSCRAPER_IMAGES_STORE_FORMAT to THUMBS, keeps only the thumbnail files, this setting makes only
sense with setting the IMAGES_THUMBS setting as well. With ALL or THUMBS you can also use different sizes for
thumbnail creation.

Note: Differing from the Scrapy output, an image is stored in the DB just by name, omitting path information like
full/

Note: For image scraping to work you need the Pillow Library (PIL fork).

Updating domain model class/scraped obj class definition

When Scrapy is downloading images it creates a new unique random file name for each image saved in your image
folder defined above. To keep a reference to the image associated with a scraped item DDS will save this filename in
a field you have to define in your model class. In our open news example, we use ‘thumbnail’ as a field name:

class Article(models.Model):
title = models.CharField(max_length=200)
news_website = models.ForeignKey(NewsWebsite)
description = models.TextField(blank=True)
thumbnail = models.CharField(max_length=200)
checker_runtime = models.ForeignKey(SchedulerRuntime)

def __unicode__(self):
return self.title

Note, that since there is just the filename of the image saved, you should declare this field as a simple CharField and
not using UrlField or ImageField.

Now you have to update your ScrapedObjClass definition in the Django admin interface. Add a new attribute with
the same name like in your model class and choose IMAGE as the attribute type. IMAGE is a special type to let your
scraper know, that the image pipeline of DDS should be used when scraping this attribute.

36 Chapter 2. User Manual

https://python-pillow.github.io/

django-dynamic-scraper Documentation, Release 0.13-beta

Extending/Testing the scraper

At last we have to add a new scraper elem to our scraper, again in the Django admin interface, which scrapes and builds
together the url of the image for the image pipeline to download later. Let’s have a look at the Wikinews website of our
open news example. On the news article overview page there is also an image presented with each article summary,
which we want to scrape. div[@class="l_image"]/a/img/@src should provide us with the url of that image.
Since the image urls we scrape with our XPath are starting with a double slash ‘//’ and not with ‘http://’, we also have
to use a pre_url processor with 'pre_url': 'http:' as the processor context to complete the url.

That’s it! If you now run your scraper, you should see lines like the following in the output (if you are in debug mode)
and you should end up with the images saved in your defined images folder and the names of these images stored in
the image field of your domain model in the DB:

DEBUG: Image (downloaded): Downloaded image from <GET http://upload.wikimedia.org/
→˓wikipedia/commons/thumb/...
...
u'thumbnail': '1bb3308a4c70b912ba6cf9d67344bb53476d70a2.jpg',

So now you have all these images, but how to rid of them if you don’t need them any more? If you use a checker
to delete scraped items not existing any more, your images will be automatically deleted as well. However, if you
manually delete scraped items in your database, you have to delete the associated file yourself.

2.4.7 Where to go from here

So now that you have got your scraper up and running and maybe even integrated some of the advanced stuff like
pagination or scraping images, does that mean that life will become boring because there is nothing to be done left?
Definitely not! Here are some ideas about what to do next:

• Contribute to Django Dynamic Scraper through the experiences you made while using it (see How to contribute)

• Make your scraped data searchable with Django Haystack

• Provide an API to your scraped data so that others can use it with Django Tastypie

• Or. . . just do something no one has ever done before! :-)

2.5 Basic services

2.5.1 Logging / Log Markers

Introduction

Django Dynamic Scraper provides its own logging mechanism in addition to the build-in logging from Scrapy. While
the Scrapy logging is mainly for debugging your scrapers during creation time, the DDS logging aims to get an
overview how your scheduled scraper runs are doing over time, if scrapers and checkers defined with DDS are still
working and how often scraper or cheker runs go wrong.

2.5. Basic services 37

http://en.wikinews.org/wiki/Main_Page
http://
http://haystacksearch.org/
https://github.com/toastdriven/django-tastypie
http://doc.scrapy.org/en/latest/topics/logging.html

django-dynamic-scraper Documentation, Release 0.13-beta

In the screenshot above you see an overview of the log table in the Django admin in which new log messages are
saved. In addition context information like the name of the spider run or the associated reference object or scraper is
provided. By using the filtering options it is possible to track down the messages targeted to the actual needs, e.g. you
can filter all the errors occurred while running your checkers.

Logging: When and Where

When DDS scrapers are run from the command line both the logging messages from Scrapy as well as the DDS
logging messages are provided. In the Django model log table, only the DDS messages are kept.

DDS only saves the DDS log messages in the DB when running with run_type=TASK and do_action=yes.
This is configuration used when running scrapers or checkers via the scheduler. When you run your scraper via the
command line you have to provide these options manually to have your DDS log messages saved in the DB (see
Running/Testing your scraper) in addition to be displayed on the screen.

Log Markers: Meaning to your logs

Going through log entries and finding out what’s wrong with your scrapers can be relatively tricky. One reason for
that is that not all log entries are equally meaningful. Sometimes scraping errors could just be planned when creating
the scraper, e.g. when using pagination for pages from 1 to 100, knowing that there are no items on some pages in
between, leading to “No base objects” log entries. Or the data being scraped is a bit dirty, occasionally missing a
mandatory field.

38 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

To get more meaning from your logs log markers come into play. Log markers are rules to mark all new log entries
with a special type while the log marker exists. For the pagination above you can e.g. create a log marker, which
marks all log entries as “Planned Error” type which contain the message “No base objects” and are coming from
the corresponding scraper. With creating rules for the most common types of errors like these it becomes easier to
concentrate on the potentially more severe errors by filtering down to the “None” type entries in your logs.

Note: Attention! Keep in mind that log markers can only be hints to a certain source of an error. When looking
at the pagination example above it can also be the case that a “No base objects” error occur on a page where there
should be some items and the scraper really not working any more. So be cautious! Log markers can only give a better
orientation with your log entries and don’t necessarily are telling the truth in all situations.

Configuration

You can configure DDS logging behaviour by providing some settings in your settings.py configuration file (see Set-
tings).

2.5.2 Monitoring

Configuration

There is a montoring section in the DDS scraper admin form with basic settings which can be used to monitor
scraper/checker functionality by checking when the last_scraper_save or last_checker_delete oc-
curred:

2.5. Basic services 39

django-dynamic-scraper Documentation, Release 0.13-beta

If last_scraper_save_alert_period or last_checker_delete_alert_period is set with an alert
period in the format demanded it is indicated by red timestamps on the admin scraper overview page if a scraper save
or checker delete is getting too old, indicating that the scraper/checker might not be working any more.

Monitoring Automation

You can use the following Django management commands to monitor your scrapers and checkers on a regular
basis:

python manage.py check_last_scraper_saves [--send-admin-mail] [--with-next-alert]
python manage.py check_last_checker_deletes [--send-admin-mail] [--with-next-alert]

Standard behaviour of the commands is to check, if the last scraper save or last checker delete occured is older than
the corresponding alert period set (see configuration section above). If the --send-admin-mail flag is set an alert
mail will be send to all admin users defined in the Django settings.py file. Additionally the next alert timestamps
(see Django admin form) will be set to the current timestamp.

Practically this leads to a lot of alerts/mails (depending on the frequency of your cronjobs) once an alert situation

40 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

triggers. If you want to switch from a Report-Always to a Report-Once (more or less) behaviour you can set
the --with-next-alert flag.

This will run alert checks only for scrapers where the corresponding next alert timestamp has passed. The timestamp
is then updated by the alert period set as the earliest time for a new alert.

An alert for a scraper with an alert period of 2 weeks will then trigger first after the last item was scraped more than 2
weeks ago. With the above flag, the next alert will then be earliest 2 weeks after the first alert.

Note: Using the --with-next-alert flag only makes sense if your periods for your alerts are significantly
longer (e.g. 1 week+) than your cronjob frequency (e.g. every day).

2.6 Reference

2.6.1 Settings

For the configuration of Django Dynamic Scraper you can use all the basic settings from Scrapy, though some settings
may not be useful to change in the context of DDS. In addition DDS defines some extra settings with the prefix
DSCRAPER. You can also place these settings in the Scrapy settings.py configuration file. At the moment this is
the only way to define DDS settings and you can’t change DDS settings via command line parameters.

DSCRAPER_IMAGES_STORE_FORMAT

Default: FLAT

Store format for images (see Scraping images/screenshots for more info).

FLAT Storing only either original or one thumbnail image, no sub folders
ALL Storing original (in full/) and thumbnail images (e.g. in thumbs/small/)
THUMBS Storing only the thumbnail images (e.g. in thumbs/small/)

DSCRAPER_CUSTOM_PROCESSORS

Default: []

List with Python paths to custom processor modules, e.g.:

DSCRAPER_CUSTOM_PROCESSORS = [
'scraper_module.scraper.processors',
'scraper_module.scraper.more_processors',
//...

]

DSCRAPER_SPLASH_ARGS

Default: { 'wait': 0.5 }

Customize Splash args when ScrapyJS/Splash is used for Javascript rendering.

2.6. Reference 41

http://doc.scrapy.org/en/latest/topics/settings.html

django-dynamic-scraper Documentation, Release 0.13-beta

DSCRAPER_LOG_ENABLED

Default: True

Enable/disable the DDS logging.

Note:

The DSCRAPER_LOG_* settings customize the behaviour DDS logs for post analysis of your scraper runs in the
DB (see Logging / Log Markers for more info). Console output log is controlled by the regularly Scrapy log
settings/options.

DSCRAPER_LOG_LEVEL

Default: ERROR

Set the log level for DDS logging. Possible values are CRITICAL, ERROR, WARNING, INFO and DEBUG.

DSCRAPER_LOG_LIMIT

Default: 250

The number of log entries in the Django database table.

DSCRAPER_MAX_SPIDER_RUNS_PER_TASK

Default: 10

Maximum number of spider runs executed per task run.

DSCRAPER_MAX_CHECKER_RUNS_PER_TASK

Default: 25

Maximum number of checker runs executed per task run.

2.6.2 Django Model Reference

TODO

ScrapedObjClass

TODO

ScrapedObjAttr

TODO

42 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

Scraper

status

Status of the scraper, influencing in which context the scraper is executed.

ACTIVE Scraper can be run manually and is included on scheduled task execution
MANUAL Scraper can only be run manually and is ignored on scheduled task execution
PAUSE Scraper is not executed, use for short pausing
INACTIVE Scraper is not executed, use for longer interruption of scraper use

ScraperElem

TODO

SchedulerRuntime

TODO

2.6.3 API Reference

TODO

DjangoSpider

TODO

DjangoChecker

TODO

2.6.4 Processors

General Functionality

Default Processors

For convenience TakeFirst processor from Scrapy and DDS string_strip processors are applied to every
attribute scraped as default processors. The default processors can be deactived separately for every scraped attribute
in the Django admin scraper definition.

Note: DDS is expecting an attribute to be a string after processor runs. Leaving with other data types might lead to
unexpected behaviour (especially for non-STANDARD attribute elements).

2.6. Reference 43

django-dynamic-scraper Documentation, Release 0.13-beta

Attribute Placeholders

Processors can use placeholders referencing other scraped attributes in the form of {ATTRIBUTE_NAME}. These
placeholders are then replaced with the other scraped attribute string after all other processing steps (scraping, regex,
processors).

Attribute placeholders can also be used to form detail page URLs. This can be used for more flexible detail page
creation, e.g. by defining a non-saved help attribute tmp_attr_1 in your ScrapedObjClass definition and using
a pre_url processor like 'pre_url': 'http://someurl.org/{tmp_attr_1}'.

Note: Placeholders for detail page URLs can only be used with attributes scraped from the main page!

Predefined Processors

join

Description Joins a list of string analogue to the Join processor from Scrapy, separated by the separator
provided in the proc context

Usable with other
processors

Default processors have to be deactivated, otherwise: Yes

Context definition
(Example)

'join': '-' (optional, default: ‘ ‘)

Result (Example) “[‘Example’, ‘Text’,]” -> “Example Text”

string_strip

Description Applies the python strip function to remove leading and trailing characters
Usable with other processors Yes
Context definition (Example) 'string_strip': ' .!' (optional, default: ‘ ntr’)
Result (Example) ” . . . Example Text!!!” -> “Example Text”

remove_chars

Description Removing of characters or character pattern using the python re.sub function by provid-
ing a regex pattern

Usable with other pro-
cessors

Yes

Context definition (Ex-
ample)

'remove_chars': '[-\.]+'

Result (Example) “Example. . . Text–!–!!” -> “Example Text!!!”

44 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

pre_string

Description Adds a string before the scraped text
Usable with other processors Yes
Context definition (Example) 'pre_string': 'BEFORE_'
Result (Example) “Example Text” -> “BEFORE_Example Text”

post_string

Description Appends a string after the scraped text
Usable with other processors Yes
Context definition (Example) 'post_string': '_AFTER'
Result (Example) “Example Text” -> “Example Text_AFTER”

pre_url

Description Adding a domain to scraped url paths, works like pre_string with some url specific enhance-
ments (throwing away defined domain when scraped text has a leading “http://” e.g.)

Usable with
other proces-
sors

Yes

Context defini-
tion (Example)

'pre_url': 'http://example.org/'

Result (Exam-
ple)

“/path/to/page.html” -> “http://example.org/path/to/page.html”

replace

Description When the scraper succeeds in scraping the attribute value, the text scraped is replaced with
the replacement given in the processor context.

Usable with other
processors

No

Context definition
(Example)

'replace': 'This is a replacement'

Result (Example) “This text was scraped” -> “This is a replacement”

2.6. Reference 45

http://
http://example.org/path/to/page.html

django-dynamic-scraper Documentation, Release 0.13-beta

substr_replace

Description A substring occurring one or multiple times in the scraped element is replaced by a target string
provided (Strings are separated by a “:” char, for use in text please mask “:” char like this: “:”).

Usable with
other proces-
sors

Yes

Context defini-
tion (Syntax)

'substr_replace': '[SUBSTRING]:[TARGET STRING]'

Context
definition
(Example)

'substr_replace': 'Title\: Hello:New Title\: Hi'

Result (Exam-
ple)

“Title: Hello my dear friend” -> “New Title: Hi my dear friend”

static

Description No matter if the scraper succeeds in scraping the attribute value or not, the static value is used as an
attribute value. This processor is also useful for testing for not relying on too many x_path values
having to succeed at once.

Usable
with other
processors

No

Context def-
inition (Ex-
ample)

'static': 'Static text'

Result
(Example)

“No matter if this text was scraped or not” -> “Static text”

date

Description Tries to parse a date with Python’s strptime function (extra sugar: recognises ‘yesterday’,
‘gestern’, ‘today’, ‘heute’, ‘tomorrow’, ‘morgen’)

Usable with other
processors

Yes

Context definition
(Example)

'date': '%d.%m.%Y'

Result (Example) “04.12.2011” -> “2011-12-04”

time

Description Tries to parse a time with Python’s strptime function
Usable with other processors Yes
Context definition (Example) 'time': '%H hours %M minutes'
Result (Example) “22 hours 15 minutes” -> “22:15”

46 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

ts_to_date

Description Tries to extract the local date of a unix timestamp
Usable with other processors Yes
Context definition (Example) No context definition
Result (Example) “1434560700” -> “2015-06-17”

ts_to_time

Description Tries to extract the local time of a unix timestamp
Usable with other processors Yes
Context definition (Example) No context definition
Result (Example) “1434560700” -> “19:05:00”

duration

Description Tries to parse a duration, works like time processor but with time unit overlap break-
down

Usable with other proces-
sors

Yes

Context definition (Exam-
ple)

'duration': '%M Minutes'

Result (Example) “77 Minutes” -> “01:17:00”

Custom Processors

If the existing predefined processors don’t fit your needs you can write your own custom processors.

A processor is just a simple Python function taking a string as input (the scraped data) together with the context
information provided in the Django admin and return a somehow modified string.

To get an idea how processors work have a look at the predefined processors in the dynamic_scraper.utils.
processors module.

To tell DDS about your custom processors provide the path(s) to your processor module(s) via the
DSCRAPER_CUSTOM_PROCESSORS setting.

2.7 Development

2.7.1 How to contribute

You can contribute to improve Django Dynamic Scraper in many ways:

• If you stumbled over a bug or have suggestions for an improvements or a feature addition report an issue on the
GitHub page with a good description.

2.7. Development 47

django-dynamic-scraper Documentation, Release 0.13-beta

• If you have already fixed the bug or added the feature in the DDS code you can also make a pull request on
GitHub. While I can’t assure that every request will be taken over into the DDS source I will look at each
request closely and integrate it if I fell that it’s a good fit!

• Since this documentation is also available in the Github repository of DDS you can also make pull requests for
documentation!

Here are some topics for which suggestions would be especially interesting:

• If you worked your way through the documentation and you were completely lost at some point, it would be
helpful to know where that was.

• If there are unnecessary limitations of the Scrapy functionality in the DDS source which could be eliminated
without adding complexity to the way you can use DDS that would be very interesting to know.

And finally: please let me know about how you are using Django Dynamic Scraper!

2.7.2 Running the test suite

Overview

Tests for DDS are organized in a separate tests Django project in the root folder of the repository. Due to restrictions
of Scrapy’s networking engine Twisted, DDS test cases directly testing scrapers have to be run as new processes and
can’t be executed sequentially via python manage.py test.

For running the tests first go to the tests directory and start a test server with:

./testserver.sh

Then you can run the test suite with:

./run_tests.sh

Note: If you are testing for DDS Django/Scrapy version compatibility: there might be 2-3 tests generally not working
properly, so if just a handful of tests don’t pass have a closer look at the test output.

Django test apps

There are currently two Django apps containing tests. The basic app testing scraper unrelated functionality like
correct processor output or scheduling time calculations. These tests can be run on a per-file-level:

python manage.py test basic.processors_test.ProcessorsTest

The scraper app is testing scraper related functionality. Tests can either be run via shell script (see above) or on a
per-test-case level like this:

python manage.py test scraper.scraper_run_test.ScraperRunTest.test_scraper #Django 1.
→˓6+
python manage.py test scraper.ScraperRunTest.test_scraper #Django up to 1.5

Have a look at the run_tests.sh shell script for more examples!

48 Chapter 2. User Manual

http://twistedmatrix.com/

django-dynamic-scraper Documentation, Release 0.13-beta

Running ScrapyJS/Splash JS rendering tests

Unit tests testing ScrapyJS/Splash Javascript rendering functionality need a working ScrapyJS/Splash
(docker) installation and are therefor run separately with:

./run_js_tests.sh

Test cases are located in scraper.scraper_js_run_test.ScraperJSRunTest. Some links:

• Splash Documentation

• ScrapyJS GitHub

• Installation of Docker on OS X with Homebrew

SPLASH_URL in scraper.settings.base_settings.py has to be adopted to your local installation to get
this running!

Docker container can be run with:

docker run -p 5023:5023 -p 8050:8050 -p 8051:8051 -d scrapinghub/splash

2.7.3 Release Notes

Changes in version 0.13.2-beta (2019-02-15)

• Added Python 3.6 and 3.7 (experimental) support, dropped Python 3.4 from support list, PR #119

• Added Scrapy 0.15 support, dropped Scrapy 0.14 from support list, PR #120

• Removed Django 1.8, 1.9, 1.10 from support list, PR #120

• Updated dependencies: future 0.15.x -> 0.17.x, Pillow 3.x to 5.x (Python 3.6 support), explicit
new attrs>=17.4.0 dependency (Python 3.6 support), PR #119

• Improved Travis CI support displaying test failure or passing on GitHub PRs, PR #117

Changes in version 0.13.1-beta (2017-11-07)

• Replaced hard-coded port 6800 for scheduled scraper/checker runs with setting from Scrapyd (thanks
@DeanSherwin for the PR)

• Renamed internal item variables item._dds_item_page to item._dds_item_page_num, and item.
_dds_item_follow_page to item._dds_item_follow_page_num (eventually have a look at your
custom pipelines.py file if used there), use item._dds_item_page for storing the page from the
pagination

Changes in version 0.13.0-beta (2017-06-29)

• Pre-note: Due to an increasing test burden, this library might drop Python 2.7 support in the foreseable
future (not decided yet, if so, probably within 6-12 month). If you haven’t already done so you might want to
start upgrading your projects to run on a Python 3 basis.

• New, second pagination layer with FOLLOW pagination type, building upon pull request #24 and allow for
dynamic pagination by extracting an URL to follow from consequent pages (for example to follow pagination
on the website to scrape). This can be combined with other pagination types (currently RANGE_FUNC and
FREE_LIST). See the updated Pagination section for further details.

2.7. Development 49

http://splash.readthedocs.org/en/latest/
https://github.com/scrapinghub/scrapyjs
http://blog.javabien.net/2014/03/03/setup-docker-on-osx-the-no-brainer-way/
https://github.com/holgerd77/django-dynamic-scraper/pull/119
https://github.com/holgerd77/django-dynamic-scraper/pull/120
https://github.com/holgerd77/django-dynamic-scraper/pull/120
https://github.com/holgerd77/django-dynamic-scraper/pull/119
https://github.com/holgerd77/django-dynamic-scraper/pull/117
https://github.com/holgerd77/django-dynamic-scraper/pull/97
https://github.com/holgerd77/django-dynamic-scraper/pull/24

django-dynamic-scraper Documentation, Release 0.13-beta

• Dropped support for Scrapy 1.1, 1.2 and 1.3, please update your Scrapy version to the latest 1.4 release
version

• Using response.follow function from Scrapy 1.4 for following detail page URLs links (supports rel-
ative URLs)

• New migrations 0022, 0023, 0024 and 0024,please run python manage.py migrate command

Added short forms for command line options:

50 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

• Allowing/enabling {page} placeholders for HEADERS, BODY, COOKIES fields and FORM DATA for
detail page URL requests (so you can inject the current page from the main page into the detail page URL
request)

• Output DDS configuration dict on DEBUG log level

• Added a general settings tab for the scraper form in the Django admin

• Fixed scraper elem textarea resize for the Django admin scraper form

• Added new option UNRESOLVED to scraper work_status

Changes in version 0.12.4-beta (2017-06-12)

Added possibility to select an internal work_status for a scraper to ease getting an overview where work needs to
be done, following values are possible:

WORK_STATUS_CHOICES = (
('R2', 'REVISION NEEDED (MAJOR)'),
('R1', 'REVISION NEEDED (MINOR)'),
('BR', 'BROKEN'),
('W', 'WORKING'),
('RC', 'RELEASE CANDIDATE'),
('BE', 'BETA'),
('A', 'ALPHA'),
('D', 'DRAFT'),
('S', 'SUSPENDED'),
('U', 'UNKNOWN'),
('N', 'NOT SET'),

)

• Added owner attribute to scraper to assign scrapers to different owners when working on scrapers with various
people (implemented as a simple/short plain text field to not endanger ex-/importability of scrapers)

• New migrations 0020, 0021 please run python manage.py migrate command

Changes in version 0.12.3-beta (2017-06-09)

• Allowing placeholders with item attributes scraped from the main page in HEADERS, BODY, COOKIES
fields and FORM DATA for detail page URL requests

2.7. Development 51

django-dynamic-scraper Documentation, Release 0.13-beta

• Fixing a bug causing log level setting on CL (with -L or --loglevel) not setting the correct log levels for
different loggers

• Using log level WARNING for a condensed output format for many-items/pages scraper runs by adding structural
information (“Starting to crawl item x.”, “Item x saved.”) to the log output

• New spider method struct_log(msg) used for logging structural information like above, if you want to
include the “Item saved” log output in the WARNING log level output adopt your custom pipelines.py file
according to the one in the example project (see: Adding the pipeline class)

• Added DEBUG log level output for placeholder replacements

• Added additional logging output for calling detail page URLs and the additional request information (Headers,
Body,. . .) sent

Changes in version 0.12.2-beta (2017-06-07)

• Added use_default_procs attribute to scraper elems to allow switching of the usage of the default proces-
sors (Scrapy TakeFirst, DDS string_strip) (see: Default Processors), new migration 0018, please
run python manage.py migrate command

• New join processor for convenience (see: Predefined Processors) analogue to Join processor from Scrapy,
has to be used with default processors deactivated

• Official support for Scrapy 1.4 (no changes in the codebase though)

• Declared Python 3.4+ support as stable

• Closing DB connection when spider run is finished (GitHub issue #84)

• Set LOG_STDOUT to False in example project scraper settings due to a bug prevent scheduling from working
when setting is activated (GitHub issue #80)

• Also define an attribute update (STANDARD (UPDATE)) field as a successful action causing the scheduler to
reset the zero actions counter and not increase time between scraper runs up to the max time (GitHub issue #88)

Changes in version 0.12.1-beta (2017-06-03)

• HOTFIX RELEASE! PLEASE UPDATE WHEN USING PYTHON 2.7!

• Fixed twisted logging filter, causing DDS completely refuse working under Python 2.7

Changes in version 0.12.0-beta (2017-05-12)

This release comes with a completely overhauled output formatting for scraper runs on the command line which
should make it a lot easier to quickly grasp what your scrapers are doing and where things go wrong. Here is a sample
output of a scraper run:

52 Chapter 2. User Manual

https://github.com/holgerd77/django-dynamic-scraper/issues/84
https://github.com/holgerd77/django-dynamic-scraper/issues/80
https://github.com/holgerd77/django-dynamic-scraper/issues/88

django-dynamic-scraper Documentation, Release 0.13-beta

This is the output from the INFO log level (log level is taken from the Scrapy LOG_LEVEL setting) which should in
most cases now suffice for normal scraper runs and debugging.

Some of the goodies:

• Formatted attribute output with extra info on attribute source (MP, DP) and request type

• Numbering of attributes by page, item number combination to easier track attributes belonging to one scraped
object

• Colors for structuring the scraping output and indicate success/failure (works on both dark/light background
terminals, dark theme is recommended though)

• Largely reducing the noise by supressing twisted traceroute output on INFO log level

If you want item numbering and colors also in your “Item saved.” log output messages you have to adopt your custom
pipelines.py class (see: Adding the pipeline class, adopt the spider.log command).

Note: There is still a known bug of the -L LOG_LEVEL setting from the command line not properly taken in some
cases, if you have problems here use the LOG_LEVEL setting in your settings.py file.

There is now also an easier way to get help on the different command line options for scraper/checker runs and
scraper test by typing the command without any options, e.g.:

scrapy crawl article_spider

2.7. Development 53

django-dynamic-scraper Documentation, Release 0.13-beta

Other changes:

• New -a start_page=PAGE and -a end_page=PAGE options for setting a range of pages to scrape

• Fixed a bug with STANDARD (UPDATE) scraped object attributes

• Replaced DOUBLE keyword-injecting (and bug causing?) workaround mechanism with _is_double meta
attribute for scraped items

Changes in version 0.11.6-beta (2017-04-21)

• Fixed severe bug preventing scheduling to work with Python 3

Changes in version 0.11.5-beta (2017-04-20)

• Fixed broken management commands check_last_checker_deletes,
check_last_scraper_saves (see Monitoring Automation) and run_checker_tests (see Run
checker tests)

Changes in version 0.11.4-beta (2017-03-28)

• Added initial migrations for example project

• New optional argument output_response_body for checker run and checker test commands for easier
checker debugging (see: Running your checkers and Run checker tests)

Changes in version 0.11.3-beta (2016-11-06)

• New processor substr_replace for replacing a substring occurring one or multiple times in the scraped
element with a target string (see: Predefined Processors)

Changes in version 0.11.2-beta (2016-08-15)

• IMPORTANT BUG FIX RELEASE! Fixes a bug saving only one thumbnail size when several thumbnail sizes
are defined with IMAGES_THUMBS setting, bug was introduced with changes in DDS v.0.11.0

Changes in version 0.11.1-beta (2016-08-05)

• Easier way for writing/integrating Custom Processors for post-processing scraped data strings, new associated
DSCRAPER_CUSTOM_PROCESSORS setting

Changes in version 0.11.0-beta (2016-05-13)

54 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

• First major release version with support for new Scrapy 1.0+ structure (only Scrapy 1.1 officially sup-
ported)

• From this release on older Scrapy versions like 0.24 are not supported any more, please update your Scrapy
version!

• Beta Python 3 support

• Support for Django 1.9

• The following manual adoptions in your project are necessary:

– Scrapy’s DjangoItem class has now moved from scrapy.contrib.djangoitem to a separate
repository scrapy-djangoitem (see Scrapy docs). The package has to be separately installed with
pip install scrapy-djangoitem and the import in your models.py class has to be changed
to from scrapy_djangoitem import DjangoItem (see: Creating your Django models)

– Due to Scrapy‘s switch to Python‘s build-in logging functionality the logging calls in your custom pipeline
class have to be slightly changed, removing the from scrapy import log import and changing the
log.[LOGLEVEL] attribute handover in the log function call to logging.[LOGLEVEL] (see: Adding
the pipeline class)

– Change except IntegrityError, e: to except IntegrityError as e: in your custom
pipelines.py module (see: Adding the pipeline class)

• Following changes have been made:

– Changed logging to use Python’s build-in logging module

– Updated import paths according to Scrapy release documentation

– Running most of the unit tests in parallel batches (when using the shell scripts) to speed up test runs

– Updated django-celery version requirement to 3.1.17 to work with Django 1.9

– Updated open_news example fixture, introduction of versioned fixture data dumps

– Removed dependency on scrapy.xlib.pydispatch being removed in Scrapy 1.1 (former DDS
v.0.10 releases will break with Scrapy 1.1)

• If you use Scrapy/Splash for Javascript rendering:

– Updated dependencies, replaced scrapyjs with scrapy-splash (renaming), please update your de-
pendencies accordingly!

• Bugfixes:

– Fixed bug with DSCRAPER_IMAGES_STORE_FORMAT set to THUMBS not working correctly

Changes in version 0.10.0-beta EXPERIMENTAL (2016-01-27)

• Experimental release branch no longer maintained, please see release notes for 0.11.

Changes in version 0.9.6-beta (2016-01-26)

• Fixed a severe bug causing scrapers to break when scraping unicode text

• Making unicode text scraping more robust

• Added several unit tests testing unicode string scraping/usage in various contexts

• Reduce size of textarea fields in scraper definitions

• Added order attribute for scraped object attributes for convenience when editing scrapers (see: Defining the
object to be scraped)

• New migration 0017, run Django migrate command

2.7. Development 55

http://doc.scrapy.org/en/1.0/news.html#full-list-of-relocations

django-dynamic-scraper Documentation, Release 0.13-beta

Changes in version 0.9.5-beta (2016-01-18)

• Fixed a severe bug when using non-saved detail page URLs in scrapers

Changes in version 0.9.4-beta (2016-01-15)

• Fixed a critical bug when using non-saved fields for scraping leading to incorrect data attribution to items

Changes in version 0.9.3-beta (2016-01-14)

• New command line options output_num_mp_response_bodies and
output_num_dp_response_bodies for logging the complete response bodies of the first {Int}
main/detail page responses to the screen for debugging (for the really hard cases :-)) (see: Running/Testing your
scraper)

Changes in version 0.9.2-beta (2016-01-14)

• New processor remove_chars (see: Processors) for removing one or several type of chars from a scraped
string

Changes in version 0.9.1-beta (2016-01-13)

• Allowing empty x_path scraper attribute fields for easier appliance of static processor to fill in static values

• Enlargening x_path, reg_exp and processor fields in Django admin scraper definition from
CharField to TextField for more extensive x_path, reg_exp and processor definitions and more
comfortable input/editing

• New command line option max_pages_read for limiting the number of pages read on test runs (see: Run-
ning/Testing your scraper)

• New migration 0016, run Django migrate command

Changes in version 0.9.0-beta (2016-01-11)

• BREAKING!!! This release slighly changes the semantics of the internal ValidationPipeline class
in dynamic_scraper/pipelines.py to also pass items to your custom user pipeline when the
do_action command line parameter (see: Running/Testing your scraper) is not set. This creates the need of
an additional if spider.conf['DO_ACTION']: restriction in your custom user pipeline function (see:
Adding the pipeline class). Make sure to add this line, otherwise you will get unwanted side effects. If you do
more stuff in your custom pipeline class also have a broader look if this new behaviour changes your processing
(you should be save though if you apply the if restriction above to all of your code in the classs).

• Decoupling of DDS Django item save mechanism for the pipeline processing to allow the usage of Scrapy‘s
build-in output options --output=FILE and --output-format=FORMAT to scrape items into a file in-
stead of the DB (see: Running/Testing your scraper).

• The above is the main change, not touching too much code. Release number nevertheless jumped up a whole
version number to indicate a major breaking change in using the library!

• Another reason for the new 0.9 version number is the amount of new features being added throuhout minor
0.8 releases (more flexible checker concept, monitoring functionality, attribute placeholders) to point out the
amount of changes since 0.8.0.

Changes in version 0.8.13-beta (2016-01-07)

• Expanded detail page URL processor placeholder concept to generic attribute placeholders (Attribute Place-
holders)

• Unit test for new functionality

Changes in version 0.8.12-beta (2016-01-06)

• Fixed Clone Scraper Django admin action omitting the creation of RequestPageType and Checker
objects introduced in the 0.8 series

56 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

• Narrowing the requirements for Pillow to 3.x versions to reduce possible future side effects

Changes in version 0.8.11-beta (2016-01-05)

• New Attribute Placeholders (previously: detail page URL placeholder) which can be used for more flexible
detail page URL creation

• Unit test for new functionality

Changes in version 0.8.10-beta (2015-12-04)

• New --with-next-alert flag for monitoring management cmds to reduce amount of mail alerts, see up-
dated Monitoring section for details

• More verbose output for monitoring management cmds

• New migration 0015, run Django migrate command

Changes in version 0.8.9-beta (2015-12-01)

• Minor changes

Changes in version 0.8.8-beta (2015-12-01)

• Fixed a bug in Django admin from previous release

Changes in version 0.8.7-beta (2015-12-01)

• New syntax/semantics of management commands check_last_checker_deletes and
check_last_scraper_saves

• Added last_scraper_save_alert_period and last_checker_delete_alert_period alert
period fields for scraper, new migration 0014, run Django migrate command

• New fields are used for providing time periods for the lowest accepted value for last scraper saves and checker
deletes, these values are then checked by the management commands above (see: Monitoring)

• Older timestamps for current values of a scraper for last_scraper_save and last_checker_delete
also trigger a visual warning indication in the Django admin scraper overview page

Changes in version 0.8.6-beta (2015-11-30)

• Two new management commands check_last_checker_deletes and
check_last_scraper_saves which can be run as a cron job for basic scraper/checker monitoring
(see: Monitoring)

Changes in version 0.8.5-beta (2015-11-30)

• New last_scraper_save, last_checker_delete datetime attributes for Scraper model for
monitoring/ statistis purposes (can be seen on Scraper overview page in Django admin)

• New migration 0013, run Django migrate command

Changes in version 0.8.4-beta (2015-11-27)

Starting update process for Python 3 support with this release (not there yet!)

• Fixed severe bug in task_utils.py preventing checker scheduling to work

• New dependency on Python-Future 0.15+ to support integrated Python 2/3 code base, please install with
pip install future

• Updating several files for being Python 2/3 compatible

Changes in version 0.8.3-beta (2015-10-01)

• More flexible checker concept now being an own Checkermodel class and allowing for more than one checker
for a single scraper. This allows checking for different URLs or xpath conditions.

2.7. Development 57

http://python-future.org/

django-dynamic-scraper Documentation, Release 0.13-beta

• Additional comment fields for RequestPageTypes and Checkers in admin for own notes

• Adopted unit tests to reflect new checker structure

• self.scrape_url = self.ref_object.url assignment in checker python class not used any more
(see: Creating a checker class), you might directly want to remove this from your project class definition to
avoid future confusion

• Some docs rewriting for Checker creation (see: Defining/Running item checkers)

• New migrations 0011, 0012, run Django migrate command

Changes in version 0.8.2-beta (2015-09-24)

• Fixed bug preventing checker tests to work

• Added Javascript rendering to checkers

• Fixed a bug letting checkers/checker tests choose the wrong detail page URL for checking under certain circum-
stances

Changes in version 0.8.1-beta (2015-09-22)

• Fixed packaging problem not including custom static Django admin JS file (for RequestPageType admin
form collapse/expand)

Changes in version 0.8.0-beta (2015-09-22)

• New request page types for main page and detail pages of scrapers (see: Adding corresponding request page
types):

– Cleaner association of request options like content or request type to main or detail pages (see: Advanced
Request Options)

– More flexibility in using different request options for main and detail pages (rendering Javascript on main
but not on detail pages, different HTTP header or body values,. . .)

– Allowance of several detail page URLs per scraper

– Possibility for not saving the detail page URL used for scraping by unchecking corresponding new
ScrapedObjClass attribute save_to_db

• ATTENTION! This release comes with heavy internal changes regarding both DB structure and scraping logic.
Unit tests are running through, but there might be untested edge cases. If you want to use the new functionality in
a production environment please do this with extra care. You also might want to wait for 2-3 weeks after release
and/or for a following 0.8.1 release (not sure if necessary yet). If you upgrade it is HIGHLY RECOMMENDED
TO BACKUP YOUR PROJECT AND YOUR DB before!

• Replaced Scrapy Spider with CrawlSpider class being the basis for DjangoBaseSpider, allowing for
more flexibility when extending

• Custom migration for automatically creating new RequestPageType objects for existing scrapers

• Unit tests for new functionality

• Partly restructured documentation, separate Installation section

• Newly added static files, run Django collectstatic command (collaps/expand for
RequestPageType inline admin form)

• New migrations 0008, 0009, 0010, run Django migrate command

Changes in version 0.7.3-beta (2015-08-10)

58 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

• New attribute dont_filter for Scraper request options (see: Advanced Request Options), necessary for
some scenarios where Scrapy falsely marks (and omits) requests as being duplicate (e.g. when scraping
uniform URLs together with custom HTTP header pagination)

• Fixed bug preventing processing of JSON with non-string data types (e.g. Number) for scraped attributes,
values are now automatically converted to String

• New migration 0007, run Django migrate command

Changes in version 0.7.2-beta (2015-08-06)

• Added new method attribute to Scraper not binding HTTP method choice (GET/POST) so strictly to choice
of request_type (allowing e.g. more flexible POST requests), see: Advanced Request Options

• Added new body attribute to Scraper allowing for sending custom request HTTP message body data,
see: Advanced Request Options

• Allowing pagination for headers, body attributes

• Allowing of ScrapedObjectClass definitions in Django admin with no attributes defined as ID
field (omits double checking process when used)

• New migration 0006, run Django migrate command

Changes in version 0.7.1-beta (2015-08-03)

• Fixed severe bug preventing pagination for cookies and form_data to work properly

• Added a new section in the docs for Advanced Request Options

• Unit tests for some scraper request option selections

Changes in version 0.7.0-beta (2015-07-31)

• Adding additional HTTP header attributes to scrapers in Django admin

• Cookie support for scrapers

• Passing Scraper specific Scrapy meta data

• Support for form requests, passing form data within requests

• Pagination support for cookies, form data

• New migration 0005, run Django migrate command

• All changes visible in Scraper form of Django admin

• ATTENTION! While unit tests for existing functionality all passing through, new functionality is not heavily
tested yet due to problems in creating test scenarios. If you want to use the new functionality in a production
environment please test with extra care. You also might want to wait for 2-3 weeks after release and/or for a
following 0.7.1 release (not sure if necessary yet)

• Please report problems/bugs on GitHub.

Changes in version 0.6.0-beta (2015-07-14)

• Replaced implicit and static ID concept of mandatory DETAIL_PAGE_URL type attribute serving as ID with
a more flexible concept of explicitly setting ID Fields for ScrapedObjClass in Django admin (see:
Defining the object to be scraped)

• New attribute id_field for ScrapedObjClass, please run Django migrate command (migration 0004)

• DETAIL_PAGE_URL type attribute not necessary any more when defining the scraped object class allowing
for more scraping use cases (classic and simple/flat datasets not referencing a certain detail page)

2.7. Development 59

https://github.com/holgerd77/django-dynamic-scraper

django-dynamic-scraper Documentation, Release 0.13-beta

• Single DETAIL_PAGE_URL type ID Field still necessary for using DDS checker functionality (see: Defin-
ing/Running item checkers)

• Additional form checks for ScrapedObjClass definition in Django admin

Changes in version 0.5.2-beta (2015-06-18)

• Two new processors ts_to_date and ts_to_time to extract local date/time from unix timestamp string
(see: Processors)

Changes in version 0.5.1-beta (2015-06-17)

• Make sure that Javascript rendering is only activated for pages with HTML content type

Changes in version 0.5.0-beta (2015-06-10)

• Support for creating JSON/JSONPath scrapers for scraping JSON encoded pages (see: Scraping JSON con-
tent)

• Added new separate content type choice for detail pages and checkers (e.g. main page in HTML, detail page in
JSON)

• New Scraper model attribute detail_page_content_type, please run Django migration command
(migration 0003)

• New library dependency python-jsonpath-rw 1.4+ (see Requirements)

• Updated unit tests to support/test JSON scraping

Changes in version 0.4.2-beta (2015-06-05)

• Possibility to customize Splash args with new setting DSCRAPER_SPLASH_ARGS (see: Setting up Splash
(Optional))

Changes in version 0.4.1-beta (2015-06-04)

• Support for Javascript rendering of scraped pages via ScrapyJS/Splash

• Feature is optional and needs a working ScrapyJS/Splash deployment, see Requirements and Setting up Splash
(Optional)

• New attribute render_javascript for Scraper model, run python manage.py migrate
dynamic_scraper to apply (migration 0002)

• New unit tests for Javascript rendering (see: Running ScrapyJS/Splash JS rendering tests)

Changes in version 0.4.0-beta (2015-06-02)

• Support for Django 1.7/1.8 and Scrapy 0.22/0.24. Earlier versions not supported any more from
this release on, if you need another configuration have a look at the DDS 0.3.x branch (new features won’t
be back-ported though) (see Release Compatibility Table)

• Switched to Django migrations, removed South dependency

• Updated core library to work with Django 1.7/1.8 (Django 1.6 and older not working any more)

• Replaced deprecated calls logged when run under Scrapy 0.24 (Scrapy 0.20 and older not working any
more)

• Things to consider when updating Scrapy: new ITEM_PIPELINES dict format, standalone scrapyd with
changed scrapy.cfg settings and new deployment procedure (see: Scrapy Configuration)

• Adopted example_project and tests Django projects to work with the updated dependecies

• Updated open_news.json example project fixture

• Changed DDS status to Beta

60 Chapter 2. User Manual

django-dynamic-scraper Documentation, Release 0.13-beta

Changes in version 0.3.14-alpha (2015-05-30)

• Pure documentation update release to get updated Scrapy 0.20/0.22/.24 compatibility info in the docs
(see: Release Compatibility Table)

Changes in version 0.3.13-alpha (2015-05-29)

• Adopted test suite to pass through under Scrapy 0.18 (Tests don’t work with Scrapy 0.16 any more)

• Added Scrapy 0.18 to release compatibility table (see: Release Compatibility Table)

Changes in version 0.3.12-alpha (2015-05-28)

• Added new release compatibility overview table to docs (see: Release Compatibility Table)

• Adopted run_tests.sh script to run with Django 1.6

• Tested Django 1.5, Django 1.6 for compatibility with DDS v.0.3.x

• Updated title xpath in fixture for Wikinews example scraper

Changes in version 0.3.11-alpha (2015-04-20)

• Added only-active and --report-only-erros options to run_checker_tests management
command (see: Run checker tests)

Changes in version 0.3.10-alpha (2015-03-17)

• Added missing management command for checker functionality tests to distribution (see: Run checker tests)

Changes in version 0.3.9-alpha (2015-01-23)

• Added new setting DSCRAPER_IMAGES_STORE_FORMAT for more flexibility with storing original and/or
thumbnail images (see Scraping images/screenshots)

Changes in version 0.3.8-alpha (2014-10-14)

• Added ability for duration processor to break down and parse second values greater than one hour in total
(>= 3600 seconds) (see: Processors)

Changes in version 0.3.7-alpha (2014-03-20)

• Improved run_checker_tests management command with --send-admin-mail flag for usage of
command in cronjob (see: Run checker tests)

Changes in version 0.3.6-alpha (2014-03-19)

• Added new admin action clone_scrapers to get a functional copy of scrapers easily

Changes in version 0.3.5-alpha (2013-11-02)

• Add super init method to call init method in Scrapy BaseSpider class to DjangoBaseSpider init method (see Pull
Request #32)

Changes in version 0.3.4-alpha (2013-10-18)

• Fixed bug displaying wrong message in checker tests

• Removed run_checker_tests celery task (which wasn’t working anyway) and replaced it with a simple
Django management command run_checker_tests to run checker tests for all scrapers

Changes in version 0.3.3-alpha (2013-10-16)

• Making status list editable in Scraper admin overview page for easier status change for many scrapers at once

• Possibility to define x_path checkers with blank checker_x_path_result, the checker is then succeed-
ing if elements are found on page (before this lead to an error message)

Changes in version 0.3.2-alpha (2013-09-28)

2.7. Development 61

https://github.com/holgerd77/django-dynamic-scraper/pull/32
https://github.com/holgerd77/django-dynamic-scraper/pull/32

django-dynamic-scraper Documentation, Release 0.13-beta

• Fixed the exception when scheduler string was processed (see Pull Request #27)

• Allowed Checker Reference URLs to be longer than the the default 200 characters (DB Migration 0004, see
Pull Request #29)

• Changed __unicode__ method for SchedulerRuntime to prevent TypeError (see Google Groups
Discussion)

• Refer to ID instead of PK (see commit in nextlanding repo)

Changes in version 0.3.1-alpha (2013-09-03)

• Possibility to add keyword arguments to spider and checker task method to specify which reference objects to
use for spider/checker runs (see: Defining your tasks)

Changes in version 0.3-alpha (2013-01-15)

• Main purpose of release is to upgrade to new libraries (Attention: some code changes necessary!)

• Scrapy 0.16: The DjangoItem class used by DDS moved from scrapy.contrib_exp.
djangoitem to scrapy.contrib.djangoitem. Please update your Django model class accordingly
(see: Creating your Django models).

• Scrapy 0.16: BOT_VERSION setting no longer used in Scrapy/DDS settings.py file (see: Setting up
Scrapy)

• Scrapy 0.16: Some minor import changes for DDS to get rid of deprecated settings import

• Django 1.5: Changed Django settings configuration, please update your Scrapy/DDS settings.py file
(see: Setting up Scrapy)

• django-celery 3.x: Simpler installation, updated docs accordingly (see: Installing/configuring django-
celery for DDS)

• New log output about which Django settings used when running a scraper

Changes in version 0.2-alpha (2012-06-22)

• Substantial API and DB layout changes compared to version 0.1

• Introduction of South for data migrations

Changes in version 0.1-pre-alpha (2011-12-20)

• Initial version

2.7.4 Roadmap

[THIS ROADMAP IS PARTIALLY OUTDATED!]

pre-alpha

Django Dynamic Scraper’s pre-alpha phase was meant to be for people interested having a first look at the library and
give some feedback if things were making generally sense the way they were worked out/conceptionally designed or
if a different approach on implementing some parts of the software would have made more sense.

alpha

DDS is currently in alpha stadium, which means that the library has proven itself in (at least) one production environ-
ment and can be (cautiously) used for production purposes. However being still very early in develpment, there are
still API and DB changes for improving the lib in different ways. The alpha stadium will be used for getting most
parts of the API relatively stable and eliminate the most urgent bugs/flaws from the software.

beta (current)

62 Chapter 2. User Manual

https://github.com/holgerd77/django-dynamic-scraper/pull/27
https://github.com/holgerd77/django-dynamic-scraper/pull/29
https://groups.google.com/forum/#!topic/django-dynamic-scraper/FSNUGhFY7YY
https://groups.google.com/forum/#!topic/django-dynamic-scraper/FSNUGhFY7YY
https://github.com/nextlanding/django-dynamic-scraper/commit/c4dfaa6e167293c7d35188c8f94f08974a32f310

django-dynamic-scraper Documentation, Release 0.13-beta

In the beta phase the API of the software should be relatively stable, though occasional changes will still be possible
if necessary. The beta stadium should be the first period where it is save to use the software in production and beeing
able to rely on its stability. Then the software should remain in beta for some time.

Version 1.0

Version 1.0 will be reached when the software has matured in the beta phase and when at least 10+ projects are using
DDS productively for different purposes.

2.7. Development 63

django-dynamic-scraper Documentation, Release 0.13-beta

64 Chapter 2. User Manual

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

65

	Features
	User Manual
	Introduction
	Installation
	Getting started
	Advanced topics
	Basic services
	Reference
	Development

	Indices and tables

